Loading…

A survey on energy‐efficient workflow scheduling algorithms in cloud computing

The advancements in computing and storage capabilities of machines and their fusion with new technologies like the Internet of Thing (IoT), 5G networks, and artificial intelligence, to name a few, has resulted in a paradigm shift in the way computing is done in a cloud environment. In addition, the...

Full description

Saved in:
Bibliographic Details
Published in:Software, practice & experience practice & experience, 2024-05, Vol.54 (5), p.637-682
Main Authors: Verma, Prateek, Maurya, Ashish Kumar, Yadav, Rama Shankar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advancements in computing and storage capabilities of machines and their fusion with new technologies like the Internet of Thing (IoT), 5G networks, and artificial intelligence, to name a few, has resulted in a paradigm shift in the way computing is done in a cloud environment. In addition, the ever‐increasing user demand for cloud services and resources has resulted in cloud service providers (CSPs) expanding the scale of their data center facilities. This has increased energy consumption leading to more carbon dioxide emission levels. Hence, it becomes all the more important to design scheduling algorithms that optimize the use of cloud resources with minimum energy consumption. This paper surveys state‐of‐the‐art algorithms for scheduling workflow tasks to cloud resources with a focus on reducing energy consumption. For this, we categorize different workflow scheduling algorithms based on the scheduling approaches used and provide an analytical discussion of the algorithms covered in the paper. Further, we provide a detailed classification of different energy‐efficient strategies used by CSPs for energy saving in data centers. Finally, we describe some of the popular real‐world workflow applications as well as highlight important emerging trends and open issues in cloud computing for future research directions.
ISSN:0038-0644
1097-024X
DOI:10.1002/spe.3292