Loading…

Black Spot Syndrome in ocean surgeonfish: using video-based surveillance to quantify disease severity and test environmental drivers

Observations of Black Spot Syndrome (BSS), a pigmented dermatopathy in marine fishes, have been increasingly reported in important grazers such as surgeonfish and parrotfish in the Caribbean. This condition has been linked to infection by the trematode parasite, Scaphanocephalus spp., although relat...

Full description

Saved in:
Bibliographic Details
Published in:Marine biology 2024-05, Vol.171 (5), p.110, Article 110
Main Authors: de Wit, Cheyenna D. G., Johnson, Pieter T. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Observations of Black Spot Syndrome (BSS), a pigmented dermatopathy in marine fishes, have been increasingly reported in important grazers such as surgeonfish and parrotfish in the Caribbean. This condition has been linked to infection by the trematode parasite, Scaphanocephalus spp., although relatively little is known about the environmental drivers of infection and how they vary spatially. This study introduces a non-invasive, video-based method to survey BSS presence and severity in ocean surgeonfish ( Acanthurus tractus ). Application of the approach across 35 coastal sites in Curaçao was used to evaluate the influence of environmental factors on BSS, including longitude, herbivorous fish density, wave energy, depth, nutrient pollution, and inhabited surface area. Of the 5123 fish surveyed between February 2022 and January 2023, 70% exhibited visible signs of BSS, and the average number of lesions per fish increased by ~ fivefold from eastern to western sites along the leeward coastline. Within a site, estimates of BSS severity were broadly consistent between different divers, different reviewers of video footage, and the date of sampling, emphasizing the robustness of the surveillance approach. Analyses of environmental factors indicated that BSS decreased with wave intensity while increasing in association with higher nutrient runoff and fishing pressure. This study provides insight into environmental correlates of BSS severity while highlighting the use of video-based surveillance as a non-invasive survey method. The mechanisms linking environmental factors with BSS as well as its consequences for affected fish remain unknown, emphasizing the need for long-term and experimental studies in this system.
ISSN:0025-3162
1432-1793
DOI:10.1007/s00227-024-04426-1