Loading…

Excess conductivity and magnetoresistance analysis for (BSF)x/(Bi, Pb)-2223 composite

This study examined the impact of adding hard ferrite Ba 0.5 Sr 0.5 Fe 12 O 19 (BSF) nanoparticles to the Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O 10+δ (Bi, Pb)-2223) superconductor phase. The investigation specifically focused on evaluating the critical current density, fluctuation-induced conductivity, an...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2024-05, Vol.130 (5), Article 291
Main Authors: Matar, M., Mohamed, I. E., Abou-Aly, A. I., Awad, R., Anas, M., Hassan, M. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-e2fc57bc3462ace907e2465f2fbe862eb3bcb938883f9d38977d8e8161daf523
container_end_page
container_issue 5
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 130
creator Matar, M.
Mohamed, I. E.
Abou-Aly, A. I.
Awad, R.
Anas, M.
Hassan, M. S.
description This study examined the impact of adding hard ferrite Ba 0.5 Sr 0.5 Fe 12 O 19 (BSF) nanoparticles to the Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O 10+δ (Bi, Pb)-2223) superconductor phase. The investigation specifically focused on evaluating the critical current density, fluctuation-induced conductivity, and magnetoresistance of nano-(BSF) x /(Bi, Pb)-2223 composite, where 0.00 ≤  x  ≤ 0.20 wt.%. The results revealed that the critical current density, J c , increased with the addition of nano-(BSF) up to x  = 0.04 wt.%, reaching a value of 441.20 A/cm 2 . The Aslamazov and Larkin (A–L) approach has been evaluated the fluctuation-induced conductivity. Several superconducting parameters, including coherence length ζ c (0), effective layer thickness d , penetration depth λ pd (0), and Fermi energy E F showed improvement as the concentration of nano-(BSF) increased up to x  = 0.04 wt.%. In addition to Ginzburg–Landau critical parameters, such as the thermodynamic critical field B c (0), lower critical magnetic field B c1 (0), upper critical magnetic field B c2 (0), and critical current density J c (0) demonstrated an increase up to x  = 0.04 wt.%, followed by a decrease for higher concentrations. The magnetoresistance measurements were performed at various applied DC magnetic fields, with values ranging from 0.29 to 4.44 kG, and were analyzed using the thermally activated flux creep (TAFC) and Ambegaokar–Halperin (AH) models. The calculated flux pinning energy ( U ) increased with the addition of nano-(BSF) up to x  = 0.04 wt.% and then decreased for x  > 0.04 wt.%. Furthermore, the transition width (Δ T ), was observed to increase as the applied magnetic field values increased. Moreover, the addition of nano-(BSF) increased the field-independent critical current density, J c,0 (0), up to x  = 0.04 wt.%, after which it decreased for higher concentrations.
doi_str_mv 10.1007/s00339-024-07384-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3033880830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3033880830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e2fc57bc3462ace907e2465f2fbe862eb3bcb938883f9d38977d8e8161daf523</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOClxaMzWbS3exRS6tCQcF6DtnspGxpNzXZSttfb3QFb87lMcN7j-Ej5Dpldylj-SgwBlBQxgVlOUhBjyeklwrglGXATkmPFSKnEorsnFyEsGJxBOc98j7dGwwhMa6pdqatP-v2kOimSjZ62WDrPIY6tLoxGK96fYhbYp1PBg9vs-F-NHiob5PXckg55xBLNlsX6hYvyZnV64BXv9oni9l0MXmi85fH58n9nBpIRUuRWzPOSwMi49pgwXLkIhtbbkuUGccSSlMWIKUEW1QgizyvJMo0Syttxxz65Kar3Xr3scPQqpXb-fhmUBB5SMlk1D7hnct4F4JHq7a-3mh_UClT3_RUR09FeuqHnjrGEHShEM3NEv1f9T-pLzIzcdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033880830</pqid></control><display><type>article</type><title>Excess conductivity and magnetoresistance analysis for (BSF)x/(Bi, Pb)-2223 composite</title><source>Springer Nature</source><creator>Matar, M. ; Mohamed, I. E. ; Abou-Aly, A. I. ; Awad, R. ; Anas, M. ; Hassan, M. S.</creator><creatorcontrib>Matar, M. ; Mohamed, I. E. ; Abou-Aly, A. I. ; Awad, R. ; Anas, M. ; Hassan, M. S.</creatorcontrib><description>This study examined the impact of adding hard ferrite Ba 0.5 Sr 0.5 Fe 12 O 19 (BSF) nanoparticles to the Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O 10+δ (Bi, Pb)-2223) superconductor phase. The investigation specifically focused on evaluating the critical current density, fluctuation-induced conductivity, and magnetoresistance of nano-(BSF) x /(Bi, Pb)-2223 composite, where 0.00 ≤  x  ≤ 0.20 wt.%. The results revealed that the critical current density, J c , increased with the addition of nano-(BSF) up to x  = 0.04 wt.%, reaching a value of 441.20 A/cm 2 . The Aslamazov and Larkin (A–L) approach has been evaluated the fluctuation-induced conductivity. Several superconducting parameters, including coherence length ζ c (0), effective layer thickness d , penetration depth λ pd (0), and Fermi energy E F showed improvement as the concentration of nano-(BSF) increased up to x  = 0.04 wt.%. In addition to Ginzburg–Landau critical parameters, such as the thermodynamic critical field B c (0), lower critical magnetic field B c1 (0), upper critical magnetic field B c2 (0), and critical current density J c (0) demonstrated an increase up to x  = 0.04 wt.%, followed by a decrease for higher concentrations. The magnetoresistance measurements were performed at various applied DC magnetic fields, with values ranging from 0.29 to 4.44 kG, and were analyzed using the thermally activated flux creep (TAFC) and Ambegaokar–Halperin (AH) models. The calculated flux pinning energy ( U ) increased with the addition of nano-(BSF) up to x  = 0.04 wt.% and then decreased for x  &gt; 0.04 wt.%. Furthermore, the transition width (Δ T ), was observed to increase as the applied magnetic field values increased. Moreover, the addition of nano-(BSF) increased the field-independent critical current density, J c,0 (0), up to x  = 0.04 wt.%, after which it decreased for higher concentrations.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-024-07384-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Coherence length ; Condensed Matter Physics ; Critical current density ; Critical field (superconductivity) ; Evaluation ; Flux pinning ; Machines ; Magnetic fields ; Magnetoresistance ; Magnetoresistivity ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Parameters ; Penetration depth ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thickness ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2024-05, Vol.130 (5), Article 291</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-e2fc57bc3462ace907e2465f2fbe862eb3bcb938883f9d38977d8e8161daf523</cites><orcidid>0000-0001-6452-5795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Matar, M.</creatorcontrib><creatorcontrib>Mohamed, I. E.</creatorcontrib><creatorcontrib>Abou-Aly, A. I.</creatorcontrib><creatorcontrib>Awad, R.</creatorcontrib><creatorcontrib>Anas, M.</creatorcontrib><creatorcontrib>Hassan, M. S.</creatorcontrib><title>Excess conductivity and magnetoresistance analysis for (BSF)x/(Bi, Pb)-2223 composite</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>This study examined the impact of adding hard ferrite Ba 0.5 Sr 0.5 Fe 12 O 19 (BSF) nanoparticles to the Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O 10+δ (Bi, Pb)-2223) superconductor phase. The investigation specifically focused on evaluating the critical current density, fluctuation-induced conductivity, and magnetoresistance of nano-(BSF) x /(Bi, Pb)-2223 composite, where 0.00 ≤  x  ≤ 0.20 wt.%. The results revealed that the critical current density, J c , increased with the addition of nano-(BSF) up to x  = 0.04 wt.%, reaching a value of 441.20 A/cm 2 . The Aslamazov and Larkin (A–L) approach has been evaluated the fluctuation-induced conductivity. Several superconducting parameters, including coherence length ζ c (0), effective layer thickness d , penetration depth λ pd (0), and Fermi energy E F showed improvement as the concentration of nano-(BSF) increased up to x  = 0.04 wt.%. In addition to Ginzburg–Landau critical parameters, such as the thermodynamic critical field B c (0), lower critical magnetic field B c1 (0), upper critical magnetic field B c2 (0), and critical current density J c (0) demonstrated an increase up to x  = 0.04 wt.%, followed by a decrease for higher concentrations. The magnetoresistance measurements were performed at various applied DC magnetic fields, with values ranging from 0.29 to 4.44 kG, and were analyzed using the thermally activated flux creep (TAFC) and Ambegaokar–Halperin (AH) models. The calculated flux pinning energy ( U ) increased with the addition of nano-(BSF) up to x  = 0.04 wt.% and then decreased for x  &gt; 0.04 wt.%. Furthermore, the transition width (Δ T ), was observed to increase as the applied magnetic field values increased. Moreover, the addition of nano-(BSF) increased the field-independent critical current density, J c,0 (0), up to x  = 0.04 wt.%, after which it decreased for higher concentrations.</description><subject>Characterization and Evaluation of Materials</subject><subject>Coherence length</subject><subject>Condensed Matter Physics</subject><subject>Critical current density</subject><subject>Critical field (superconductivity)</subject><subject>Evaluation</subject><subject>Flux pinning</subject><subject>Machines</subject><subject>Magnetic fields</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Parameters</subject><subject>Penetration depth</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOClxaMzWbS3exRS6tCQcF6DtnspGxpNzXZSttfb3QFb87lMcN7j-Ej5Dpldylj-SgwBlBQxgVlOUhBjyeklwrglGXATkmPFSKnEorsnFyEsGJxBOc98j7dGwwhMa6pdqatP-v2kOimSjZ62WDrPIY6tLoxGK96fYhbYp1PBg9vs-F-NHiob5PXckg55xBLNlsX6hYvyZnV64BXv9oni9l0MXmi85fH58n9nBpIRUuRWzPOSwMi49pgwXLkIhtbbkuUGccSSlMWIKUEW1QgizyvJMo0Syttxxz65Kar3Xr3scPQqpXb-fhmUBB5SMlk1D7hnct4F4JHq7a-3mh_UClT3_RUR09FeuqHnjrGEHShEM3NEv1f9T-pLzIzcdY</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Matar, M.</creator><creator>Mohamed, I. E.</creator><creator>Abou-Aly, A. I.</creator><creator>Awad, R.</creator><creator>Anas, M.</creator><creator>Hassan, M. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6452-5795</orcidid></search><sort><creationdate>20240501</creationdate><title>Excess conductivity and magnetoresistance analysis for (BSF)x/(Bi, Pb)-2223 composite</title><author>Matar, M. ; Mohamed, I. E. ; Abou-Aly, A. I. ; Awad, R. ; Anas, M. ; Hassan, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e2fc57bc3462ace907e2465f2fbe862eb3bcb938883f9d38977d8e8161daf523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Coherence length</topic><topic>Condensed Matter Physics</topic><topic>Critical current density</topic><topic>Critical field (superconductivity)</topic><topic>Evaluation</topic><topic>Flux pinning</topic><topic>Machines</topic><topic>Magnetic fields</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Parameters</topic><topic>Penetration depth</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matar, M.</creatorcontrib><creatorcontrib>Mohamed, I. E.</creatorcontrib><creatorcontrib>Abou-Aly, A. I.</creatorcontrib><creatorcontrib>Awad, R.</creatorcontrib><creatorcontrib>Anas, M.</creatorcontrib><creatorcontrib>Hassan, M. S.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matar, M.</au><au>Mohamed, I. E.</au><au>Abou-Aly, A. I.</au><au>Awad, R.</au><au>Anas, M.</au><au>Hassan, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excess conductivity and magnetoresistance analysis for (BSF)x/(Bi, Pb)-2223 composite</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>130</volume><issue>5</issue><artnum>291</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>This study examined the impact of adding hard ferrite Ba 0.5 Sr 0.5 Fe 12 O 19 (BSF) nanoparticles to the Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3.2 O 10+δ (Bi, Pb)-2223) superconductor phase. The investigation specifically focused on evaluating the critical current density, fluctuation-induced conductivity, and magnetoresistance of nano-(BSF) x /(Bi, Pb)-2223 composite, where 0.00 ≤  x  ≤ 0.20 wt.%. The results revealed that the critical current density, J c , increased with the addition of nano-(BSF) up to x  = 0.04 wt.%, reaching a value of 441.20 A/cm 2 . The Aslamazov and Larkin (A–L) approach has been evaluated the fluctuation-induced conductivity. Several superconducting parameters, including coherence length ζ c (0), effective layer thickness d , penetration depth λ pd (0), and Fermi energy E F showed improvement as the concentration of nano-(BSF) increased up to x  = 0.04 wt.%. In addition to Ginzburg–Landau critical parameters, such as the thermodynamic critical field B c (0), lower critical magnetic field B c1 (0), upper critical magnetic field B c2 (0), and critical current density J c (0) demonstrated an increase up to x  = 0.04 wt.%, followed by a decrease for higher concentrations. The magnetoresistance measurements were performed at various applied DC magnetic fields, with values ranging from 0.29 to 4.44 kG, and were analyzed using the thermally activated flux creep (TAFC) and Ambegaokar–Halperin (AH) models. The calculated flux pinning energy ( U ) increased with the addition of nano-(BSF) up to x  = 0.04 wt.% and then decreased for x  &gt; 0.04 wt.%. Furthermore, the transition width (Δ T ), was observed to increase as the applied magnetic field values increased. Moreover, the addition of nano-(BSF) increased the field-independent critical current density, J c,0 (0), up to x  = 0.04 wt.%, after which it decreased for higher concentrations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-024-07384-z</doi><orcidid>https://orcid.org/0000-0001-6452-5795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2024-05, Vol.130 (5), Article 291
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_3033880830
source Springer Nature
subjects Characterization and Evaluation of Materials
Coherence length
Condensed Matter Physics
Critical current density
Critical field (superconductivity)
Evaluation
Flux pinning
Machines
Magnetic fields
Magnetoresistance
Magnetoresistivity
Manufacturing
Nanotechnology
Optical and Electronic Materials
Parameters
Penetration depth
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thickness
Thin Films
title Excess conductivity and magnetoresistance analysis for (BSF)x/(Bi, Pb)-2223 composite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excess%20conductivity%20and%20magnetoresistance%20analysis%20for%20(BSF)x/(Bi,%20Pb)-2223%20composite&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Matar,%20M.&rft.date=2024-05-01&rft.volume=130&rft.issue=5&rft.artnum=291&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-024-07384-z&rft_dat=%3Cproquest_cross%3E3033880830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-e2fc57bc3462ace907e2465f2fbe862eb3bcb938883f9d38977d8e8161daf523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033880830&rft_id=info:pmid/&rfr_iscdi=true