Loading…
Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer
Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the...
Saved in:
Published in: | International journal of energy research 2024-03, Vol.2024, p.1-15 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63 |
container_end_page | 15 |
container_issue | |
container_start_page | 1 |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Kim, Dohun Nguyen, Minh Hai Chun, Seung Hoon Jeon, June Kim, Byung-Kook Park, Sangbaek |
description | Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries. |
doi_str_mv | 10.1155/2024/9050890 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3034071418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034071418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pzR8Q8Kh1Sdqk6XHKnEJhwhSGl5KmX1xmbWaaIvPkf_Af-kvs2M6evsP78H7wInROyTWlnI8YYckoI5zIjBygASVZFlGaLA7RgMQijjKSLo7RSduuCOkzmg7Q2zyo0tb2SwXrGuwMzm2aq_jFsxlleO5qW-FJDTp4V28C4LD0rntd4qmKblQLFX70oO3aBhWgxaqpegF9-vv9M-7wvPNGacC52oA_RUdG1S2c7e8QPd9Nnm7vo3w2fbgd55FmLAkR10lSacMrwXkqUypLCRJ4IkBrwYALEzMmtCxNSkQKYCpBJSeCmQyMKUU8RBe73rV3Hx20oVi5zjf9yyImcUJSmlDZq6ud0t61rQdTrL19V35TUFJs5yy2cxb7OXt-ueNL21Tq0_6v_wA_R3Sk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034071418</pqid></control><display><type>article</type><title>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Access via ProQuest (Open Access)</source><creator>Kim, Dohun ; Nguyen, Minh Hai ; Chun, Seung Hoon ; Jeon, June ; Kim, Byung-Kook ; Park, Sangbaek</creator><contributor>Sun, Hongtao ; Hongtao Sun</contributor><creatorcontrib>Kim, Dohun ; Nguyen, Minh Hai ; Chun, Seung Hoon ; Jeon, June ; Kim, Byung-Kook ; Park, Sangbaek ; Sun, Hongtao ; Hongtao Sun</creatorcontrib><description>Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/9050890</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Atoms & subatomic particles ; Batteries ; Conductivity ; Contact angle ; Contact resistance ; Cycles ; Electrolytes ; Garnet ; Grain boundaries ; High temperature ; Investigations ; Ion currents ; Metals ; Polyvinyl alcohol ; Precipitates ; Precipitation ; Relative density ; Sintering ; Solid electrolytes ; Specific gravity ; Spectrum analysis ; Stability ; Surface layers ; Synergistic effect ; Thickness</subject><ispartof>International journal of energy research, 2024-03, Vol.2024, p.1-15</ispartof><rights>Copyright © 2024 Dohun Kim et al.</rights><rights>Copyright © 2024 Dohun Kim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63</cites><orcidid>0000-0002-4900-2010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3034071418/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3034071418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Sun, Hongtao</contributor><contributor>Hongtao Sun</contributor><creatorcontrib>Kim, Dohun</creatorcontrib><creatorcontrib>Nguyen, Minh Hai</creatorcontrib><creatorcontrib>Chun, Seung Hoon</creatorcontrib><creatorcontrib>Jeon, June</creatorcontrib><creatorcontrib>Kim, Byung-Kook</creatorcontrib><creatorcontrib>Park, Sangbaek</creatorcontrib><title>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</title><title>International journal of energy research</title><description>Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.</description><subject>Atoms & subatomic particles</subject><subject>Batteries</subject><subject>Conductivity</subject><subject>Contact angle</subject><subject>Contact resistance</subject><subject>Cycles</subject><subject>Electrolytes</subject><subject>Garnet</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Ion currents</subject><subject>Metals</subject><subject>Polyvinyl alcohol</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Relative density</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Specific gravity</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Surface layers</subject><subject>Synergistic effect</subject><subject>Thickness</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90EFLwzAYBuAgCs7pzR8Q8Kh1Sdqk6XHKnEJhwhSGl5KmX1xmbWaaIvPkf_Af-kvs2M6evsP78H7wInROyTWlnI8YYckoI5zIjBygASVZFlGaLA7RgMQijjKSLo7RSduuCOkzmg7Q2zyo0tb2SwXrGuwMzm2aq_jFsxlleO5qW-FJDTp4V28C4LD0rntd4qmKblQLFX70oO3aBhWgxaqpegF9-vv9M-7wvPNGacC52oA_RUdG1S2c7e8QPd9Nnm7vo3w2fbgd55FmLAkR10lSacMrwXkqUypLCRJ4IkBrwYALEzMmtCxNSkQKYCpBJSeCmQyMKUU8RBe73rV3Hx20oVi5zjf9yyImcUJSmlDZq6ud0t61rQdTrL19V35TUFJs5yy2cxb7OXt-ueNL21Tq0_6v_wA_R3Sk</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Kim, Dohun</creator><creator>Nguyen, Minh Hai</creator><creator>Chun, Seung Hoon</creator><creator>Jeon, June</creator><creator>Kim, Byung-Kook</creator><creator>Park, Sangbaek</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4900-2010</orcidid></search><sort><creationdate>20240328</creationdate><title>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</title><author>Kim, Dohun ; Nguyen, Minh Hai ; Chun, Seung Hoon ; Jeon, June ; Kim, Byung-Kook ; Park, Sangbaek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atoms & subatomic particles</topic><topic>Batteries</topic><topic>Conductivity</topic><topic>Contact angle</topic><topic>Contact resistance</topic><topic>Cycles</topic><topic>Electrolytes</topic><topic>Garnet</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Ion currents</topic><topic>Metals</topic><topic>Polyvinyl alcohol</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Relative density</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Specific gravity</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Surface layers</topic><topic>Synergistic effect</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dohun</creatorcontrib><creatorcontrib>Nguyen, Minh Hai</creatorcontrib><creatorcontrib>Chun, Seung Hoon</creatorcontrib><creatorcontrib>Jeon, June</creatorcontrib><creatorcontrib>Kim, Byung-Kook</creatorcontrib><creatorcontrib>Park, Sangbaek</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dohun</au><au>Nguyen, Minh Hai</au><au>Chun, Seung Hoon</au><au>Jeon, June</au><au>Kim, Byung-Kook</au><au>Park, Sangbaek</au><au>Sun, Hongtao</au><au>Hongtao Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</atitle><jtitle>International journal of energy research</jtitle><date>2024-03-28</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2024/9050890</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4900-2010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-03, Vol.2024, p.1-15 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_3034071418 |
source | Open Access: Wiley-Blackwell Open Access Journals; Access via ProQuest (Open Access) |
subjects | Atoms & subatomic particles Batteries Conductivity Contact angle Contact resistance Cycles Electrolytes Garnet Grain boundaries High temperature Investigations Ion currents Metals Polyvinyl alcohol Precipitates Precipitation Relative density Sintering Solid electrolytes Specific gravity Spectrum analysis Stability Surface layers Synergistic effect Thickness |
title | Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Li7La3Zr2O12%20Solid%20Electrolyte%20through%20Ga-Based%20Precipitates%20and%20the%20Ga%E2%80%93Au%20Surface%20Layer&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Kim,%20Dohun&rft.date=2024-03-28&rft.volume=2024&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/9050890&rft_dat=%3Cproquest_cross%3E3034071418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034071418&rft_id=info:pmid/&rfr_iscdi=true |