Loading…

Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer

Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research 2024-03, Vol.2024, p.1-15
Main Authors: Kim, Dohun, Nguyen, Minh Hai, Chun, Seung Hoon, Jeon, June, Kim, Byung-Kook, Park, Sangbaek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63
container_end_page 15
container_issue
container_start_page 1
container_title International journal of energy research
container_volume 2024
creator Kim, Dohun
Nguyen, Minh Hai
Chun, Seung Hoon
Jeon, June
Kim, Byung-Kook
Park, Sangbaek
description Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.
doi_str_mv 10.1155/2024/9050890
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3034071418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3034071418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pzR8Q8Kh1Sdqk6XHKnEJhwhSGl5KmX1xmbWaaIvPkf_Af-kvs2M6evsP78H7wInROyTWlnI8YYckoI5zIjBygASVZFlGaLA7RgMQijjKSLo7RSduuCOkzmg7Q2zyo0tb2SwXrGuwMzm2aq_jFsxlleO5qW-FJDTp4V28C4LD0rntd4qmKblQLFX70oO3aBhWgxaqpegF9-vv9M-7wvPNGacC52oA_RUdG1S2c7e8QPd9Nnm7vo3w2fbgd55FmLAkR10lSacMrwXkqUypLCRJ4IkBrwYALEzMmtCxNSkQKYCpBJSeCmQyMKUU8RBe73rV3Hx20oVi5zjf9yyImcUJSmlDZq6ud0t61rQdTrL19V35TUFJs5yy2cxb7OXt-ueNL21Tq0_6v_wA_R3Sk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034071418</pqid></control><display><type>article</type><title>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Access via ProQuest (Open Access)</source><creator>Kim, Dohun ; Nguyen, Minh Hai ; Chun, Seung Hoon ; Jeon, June ; Kim, Byung-Kook ; Park, Sangbaek</creator><contributor>Sun, Hongtao ; Hongtao Sun</contributor><creatorcontrib>Kim, Dohun ; Nguyen, Minh Hai ; Chun, Seung Hoon ; Jeon, June ; Kim, Byung-Kook ; Park, Sangbaek ; Sun, Hongtao ; Hongtao Sun</creatorcontrib><description>Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/9050890</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Atoms &amp; subatomic particles ; Batteries ; Conductivity ; Contact angle ; Contact resistance ; Cycles ; Electrolytes ; Garnet ; Grain boundaries ; High temperature ; Investigations ; Ion currents ; Metals ; Polyvinyl alcohol ; Precipitates ; Precipitation ; Relative density ; Sintering ; Solid electrolytes ; Specific gravity ; Spectrum analysis ; Stability ; Surface layers ; Synergistic effect ; Thickness</subject><ispartof>International journal of energy research, 2024-03, Vol.2024, p.1-15</ispartof><rights>Copyright © 2024 Dohun Kim et al.</rights><rights>Copyright © 2024 Dohun Kim et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63</cites><orcidid>0000-0002-4900-2010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3034071418/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3034071418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Sun, Hongtao</contributor><contributor>Hongtao Sun</contributor><creatorcontrib>Kim, Dohun</creatorcontrib><creatorcontrib>Nguyen, Minh Hai</creatorcontrib><creatorcontrib>Chun, Seung Hoon</creatorcontrib><creatorcontrib>Jeon, June</creatorcontrib><creatorcontrib>Kim, Byung-Kook</creatorcontrib><creatorcontrib>Park, Sangbaek</creatorcontrib><title>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</title><title>International journal of energy research</title><description>Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.</description><subject>Atoms &amp; subatomic particles</subject><subject>Batteries</subject><subject>Conductivity</subject><subject>Contact angle</subject><subject>Contact resistance</subject><subject>Cycles</subject><subject>Electrolytes</subject><subject>Garnet</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Ion currents</subject><subject>Metals</subject><subject>Polyvinyl alcohol</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Relative density</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>Specific gravity</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Surface layers</subject><subject>Synergistic effect</subject><subject>Thickness</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90EFLwzAYBuAgCs7pzR8Q8Kh1Sdqk6XHKnEJhwhSGl5KmX1xmbWaaIvPkf_Af-kvs2M6evsP78H7wInROyTWlnI8YYckoI5zIjBygASVZFlGaLA7RgMQijjKSLo7RSduuCOkzmg7Q2zyo0tb2SwXrGuwMzm2aq_jFsxlleO5qW-FJDTp4V28C4LD0rntd4qmKblQLFX70oO3aBhWgxaqpegF9-vv9M-7wvPNGacC52oA_RUdG1S2c7e8QPd9Nnm7vo3w2fbgd55FmLAkR10lSacMrwXkqUypLCRJ4IkBrwYALEzMmtCxNSkQKYCpBJSeCmQyMKUU8RBe73rV3Hx20oVi5zjf9yyImcUJSmlDZq6ud0t61rQdTrL19V35TUFJs5yy2cxb7OXt-ueNL21Tq0_6v_wA_R3Sk</recordid><startdate>20240328</startdate><enddate>20240328</enddate><creator>Kim, Dohun</creator><creator>Nguyen, Minh Hai</creator><creator>Chun, Seung Hoon</creator><creator>Jeon, June</creator><creator>Kim, Byung-Kook</creator><creator>Park, Sangbaek</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4900-2010</orcidid></search><sort><creationdate>20240328</creationdate><title>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</title><author>Kim, Dohun ; Nguyen, Minh Hai ; Chun, Seung Hoon ; Jeon, June ; Kim, Byung-Kook ; Park, Sangbaek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Batteries</topic><topic>Conductivity</topic><topic>Contact angle</topic><topic>Contact resistance</topic><topic>Cycles</topic><topic>Electrolytes</topic><topic>Garnet</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Ion currents</topic><topic>Metals</topic><topic>Polyvinyl alcohol</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Relative density</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>Specific gravity</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Surface layers</topic><topic>Synergistic effect</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dohun</creatorcontrib><creatorcontrib>Nguyen, Minh Hai</creatorcontrib><creatorcontrib>Chun, Seung Hoon</creatorcontrib><creatorcontrib>Jeon, June</creatorcontrib><creatorcontrib>Kim, Byung-Kook</creatorcontrib><creatorcontrib>Park, Sangbaek</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dohun</au><au>Nguyen, Minh Hai</au><au>Chun, Seung Hoon</au><au>Jeon, June</au><au>Kim, Byung-Kook</au><au>Park, Sangbaek</au><au>Sun, Hongtao</au><au>Hongtao Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer</atitle><jtitle>International journal of energy research</jtitle><date>2024-03-28</date><risdate>2024</risdate><volume>2024</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Garnet-type Li7La3Zr2O12 (LLZO) is a promising oxide solid electrolyte with high ionic conductivity and excellent stability toward Li metal. However, the presence of grain boundaries (GBs) causes a decrease in the ionic conductivity and cycling stability of the sintered LLZO. Herein, we promote the Ga precipitation at GBs through excessive doping with Ga/Al/Ta, simultaneously depositing a few nanometers thickness Au layer to form a Ga–Au surface layer. High-temperature sintering of heavily doped LLZO induces Ga precipitation, effectively filling the GB of the pellet. Consequently, the relative density and ionic conductivity are increased. Furthermore, nanoscale Au encounters precipitated Ga and forms a new Ga–Au layer, which reduces the contact resistance. The new layer prevents direct contact between molten Li and Ga-based composites at the GBs, thus enhancing the cycling stability. Therefore, it demonstrates the synergistic effect that the precipitated Ga improves the compactness of the LLZO electrolyte, whereas the Ga–Au layer enhances the cycling stability. It provides a straightforward approach to address the issues originated from GBs and increase the cycling stability of LLZO, thereby contributing to the practical application of all-solid-state batteries.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2024/9050890</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4900-2010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2024-03, Vol.2024, p.1-15
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_3034071418
source Open Access: Wiley-Blackwell Open Access Journals; Access via ProQuest (Open Access)
subjects Atoms & subatomic particles
Batteries
Conductivity
Contact angle
Contact resistance
Cycles
Electrolytes
Garnet
Grain boundaries
High temperature
Investigations
Ion currents
Metals
Polyvinyl alcohol
Precipitates
Precipitation
Relative density
Sintering
Solid electrolytes
Specific gravity
Spectrum analysis
Stability
Surface layers
Synergistic effect
Thickness
title Stabilization of Li7La3Zr2O12 Solid Electrolyte through Ga-Based Precipitates and the Ga–Au Surface Layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20Li7La3Zr2O12%20Solid%20Electrolyte%20through%20Ga-Based%20Precipitates%20and%20the%20Ga%E2%80%93Au%20Surface%20Layer&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Kim,%20Dohun&rft.date=2024-03-28&rft.volume=2024&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/9050890&rft_dat=%3Cproquest_cross%3E3034071418%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-5c44dcf5d65578718b8e8e546ecc62e56f3226c8bf7067eefd6185062f9effb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3034071418&rft_id=info:pmid/&rfr_iscdi=true