Loading…

Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications

We present a comprehensive study on the utilization of Ni-doped Co 3 O 4 nanoparticles for energy storage applications, particularly in supercapacitors. X-ray diffraction analysis confirms the structural integrity and phase purity of the samples, exhibiting the characteristic peaks of the cubic spin...

Full description

Saved in:
Bibliographic Details
Published in:Ionics 2024-04, Vol.30 (4), p.2069-2082
Main Authors: Karthikeyan, A., Mariappan, R., Krishnamoorthy, E., Bakkiyaraj, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-ded8fa1f53b74e195cdfb5edda1c8ecaee21c44792c83a634694a542be42ca83
container_end_page 2082
container_issue 4
container_start_page 2069
container_title Ionics
container_volume 30
creator Karthikeyan, A.
Mariappan, R.
Krishnamoorthy, E.
Bakkiyaraj, R.
description We present a comprehensive study on the utilization of Ni-doped Co 3 O 4 nanoparticles for energy storage applications, particularly in supercapacitors. X-ray diffraction analysis confirms the structural integrity and phase purity of the samples, exhibiting the characteristic peaks of the cubic spinel structure. X-ray photoelectron spectroscopy confirms the presence of Co, Ni, and O elements, with different valence states observed. Scanning electron microscope images reveal irregular nano-flakes with increased particle size and reduced porosity as the Ni doping concentration rises. The surface properties of nickel-doped cobalt oxide (Co 3 O 4 ) nanoparticles are investigated through Brunauer–Emmett–Teller (BET) analysis. The research focuses on elucidating the specific surface area and adsorption characteristics, providing insights into the structural and textural features of the Ni-doped Co 3 O 4 nanomaterials. Electrochemical analysis, including cyclic voltammetry and galvanostatic charge–discharge tests, demonstrates promising performance. Specifically, the 3 wt% Ni-doped Co 3 O 4 sample exhibits a maximum specific capacitance of 299 F/g at a scan rate of 5 mV/s. The galvanostatic charge–discharge (GCD) profiles of all three Ni-doped Co 3 O 4 nanoparticles were carried out, revealing quasi-triangular charge–discharge curves attributed to both pseudo capacitive and electric double-layer processes. Moreover, the 3% Ni-doped Co 3 O 4 nanoparticles demonstrate a maximum specific capacitance of 347 F/g at a scan rate of 1.5 A/g. Additionally, the 5% Ni-doped Co 3 O 4 nanoparticles exhibit an impressive capacity retention of 90% even after 5000 cycles. Our findings indicate that appropriate Ni doping on Co 3 O 4 nanoparticles enhances their electrochemical performance, showing great potential for supercapacitor applications.
doi_str_mv 10.1007/s11581-024-05417-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3035135890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035135890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ded8fa1f53b74e195cdfb5edda1c8ecaee21c44792c83a634694a542be42ca83</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcB19E8m3Ypw_iAwdmM65CmN6VjTWrSAeffW63gztXdnPNdOAhdM3rLKNV3mTFVMkK5JFRJpok8QQtWFpxQXdBTtKCV1ERTqc_RRc57SouCcb1Ar2vvwY04evzSuTfocROHLrQ4BryKte1HvP3sGsDBhjjYNHauh4x9TBgCpPaI8xiTbQHbYeg7Z8cuhnyJzrztM1z93iXaPax3qyey2T4-r-43xAkmR9JAU3rLvBK1lsAq5RpfK2gay1wJzgJw5qTUFXelsIWQRSWtkrwGyZ0txRLdzLNDih8HyKPZx0MK00cjqFBMqLKiE8VnyqWYcwJvhtS923Q0jJrvemauZ6Z65qeekZMkZilPcGgh_U3_Y30B_3Rzmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035135890</pqid></control><display><type>article</type><title>Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Karthikeyan, A. ; Mariappan, R. ; Krishnamoorthy, E. ; Bakkiyaraj, R.</creator><creatorcontrib>Karthikeyan, A. ; Mariappan, R. ; Krishnamoorthy, E. ; Bakkiyaraj, R.</creatorcontrib><description>We present a comprehensive study on the utilization of Ni-doped Co 3 O 4 nanoparticles for energy storage applications, particularly in supercapacitors. X-ray diffraction analysis confirms the structural integrity and phase purity of the samples, exhibiting the characteristic peaks of the cubic spinel structure. X-ray photoelectron spectroscopy confirms the presence of Co, Ni, and O elements, with different valence states observed. Scanning electron microscope images reveal irregular nano-flakes with increased particle size and reduced porosity as the Ni doping concentration rises. The surface properties of nickel-doped cobalt oxide (Co 3 O 4 ) nanoparticles are investigated through Brunauer–Emmett–Teller (BET) analysis. The research focuses on elucidating the specific surface area and adsorption characteristics, providing insights into the structural and textural features of the Ni-doped Co 3 O 4 nanomaterials. Electrochemical analysis, including cyclic voltammetry and galvanostatic charge–discharge tests, demonstrates promising performance. Specifically, the 3 wt% Ni-doped Co 3 O 4 sample exhibits a maximum specific capacitance of 299 F/g at a scan rate of 5 mV/s. The galvanostatic charge–discharge (GCD) profiles of all three Ni-doped Co 3 O 4 nanoparticles were carried out, revealing quasi-triangular charge–discharge curves attributed to both pseudo capacitive and electric double-layer processes. Moreover, the 3% Ni-doped Co 3 O 4 nanoparticles demonstrate a maximum specific capacitance of 347 F/g at a scan rate of 1.5 A/g. Additionally, the 5% Ni-doped Co 3 O 4 nanoparticles exhibit an impressive capacity retention of 90% even after 5000 cycles. Our findings indicate that appropriate Ni doping on Co 3 O 4 nanoparticles enhances their electrochemical performance, showing great potential for supercapacitor applications.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05417-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capacitance ; Chemistry ; Chemistry and Materials Science ; Cobalt oxides ; Condensed Matter Physics ; Discharge ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrons ; Energy Storage ; Nanomaterials ; Nanoparticles ; Nickel ; Optical and Electronic Materials ; Photoelectrons ; Renewable and Green Energy ; Structural integrity ; Supercapacitors ; Surface properties ; Valence ; X ray photoelectron spectroscopy</subject><ispartof>Ionics, 2024-04, Vol.30 (4), p.2069-2082</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ded8fa1f53b74e195cdfb5edda1c8ecaee21c44792c83a634694a542be42ca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Karthikeyan, A.</creatorcontrib><creatorcontrib>Mariappan, R.</creatorcontrib><creatorcontrib>Krishnamoorthy, E.</creatorcontrib><creatorcontrib>Bakkiyaraj, R.</creatorcontrib><title>Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications</title><title>Ionics</title><addtitle>Ionics</addtitle><description>We present a comprehensive study on the utilization of Ni-doped Co 3 O 4 nanoparticles for energy storage applications, particularly in supercapacitors. X-ray diffraction analysis confirms the structural integrity and phase purity of the samples, exhibiting the characteristic peaks of the cubic spinel structure. X-ray photoelectron spectroscopy confirms the presence of Co, Ni, and O elements, with different valence states observed. Scanning electron microscope images reveal irregular nano-flakes with increased particle size and reduced porosity as the Ni doping concentration rises. The surface properties of nickel-doped cobalt oxide (Co 3 O 4 ) nanoparticles are investigated through Brunauer–Emmett–Teller (BET) analysis. The research focuses on elucidating the specific surface area and adsorption characteristics, providing insights into the structural and textural features of the Ni-doped Co 3 O 4 nanomaterials. Electrochemical analysis, including cyclic voltammetry and galvanostatic charge–discharge tests, demonstrates promising performance. Specifically, the 3 wt% Ni-doped Co 3 O 4 sample exhibits a maximum specific capacitance of 299 F/g at a scan rate of 5 mV/s. The galvanostatic charge–discharge (GCD) profiles of all three Ni-doped Co 3 O 4 nanoparticles were carried out, revealing quasi-triangular charge–discharge curves attributed to both pseudo capacitive and electric double-layer processes. Moreover, the 3% Ni-doped Co 3 O 4 nanoparticles demonstrate a maximum specific capacitance of 347 F/g at a scan rate of 1.5 A/g. Additionally, the 5% Ni-doped Co 3 O 4 nanoparticles exhibit an impressive capacity retention of 90% even after 5000 cycles. Our findings indicate that appropriate Ni doping on Co 3 O 4 nanoparticles enhances their electrochemical performance, showing great potential for supercapacitor applications.</description><subject>Capacitance</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt oxides</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrons</subject><subject>Energy Storage</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Renewable and Green Energy</subject><subject>Structural integrity</subject><subject>Supercapacitors</subject><subject>Surface properties</subject><subject>Valence</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcB19E8m3Ypw_iAwdmM65CmN6VjTWrSAeffW63gztXdnPNdOAhdM3rLKNV3mTFVMkK5JFRJpok8QQtWFpxQXdBTtKCV1ERTqc_RRc57SouCcb1Ar2vvwY04evzSuTfocROHLrQ4BryKte1HvP3sGsDBhjjYNHauh4x9TBgCpPaI8xiTbQHbYeg7Z8cuhnyJzrztM1z93iXaPax3qyey2T4-r-43xAkmR9JAU3rLvBK1lsAq5RpfK2gay1wJzgJw5qTUFXelsIWQRSWtkrwGyZ0txRLdzLNDih8HyKPZx0MK00cjqFBMqLKiE8VnyqWYcwJvhtS923Q0jJrvemauZ6Z65qeekZMkZilPcGgh_U3_Y30B_3Rzmw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Karthikeyan, A.</creator><creator>Mariappan, R.</creator><creator>Krishnamoorthy, E.</creator><creator>Bakkiyaraj, R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications</title><author>Karthikeyan, A. ; Mariappan, R. ; Krishnamoorthy, E. ; Bakkiyaraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ded8fa1f53b74e195cdfb5edda1c8ecaee21c44792c83a634694a542be42ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt oxides</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrons</topic><topic>Energy Storage</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Renewable and Green Energy</topic><topic>Structural integrity</topic><topic>Supercapacitors</topic><topic>Surface properties</topic><topic>Valence</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karthikeyan, A.</creatorcontrib><creatorcontrib>Mariappan, R.</creatorcontrib><creatorcontrib>Krishnamoorthy, E.</creatorcontrib><creatorcontrib>Bakkiyaraj, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karthikeyan, A.</au><au>Mariappan, R.</au><au>Krishnamoorthy, E.</au><au>Bakkiyaraj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>30</volume><issue>4</issue><spage>2069</spage><epage>2082</epage><pages>2069-2082</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>We present a comprehensive study on the utilization of Ni-doped Co 3 O 4 nanoparticles for energy storage applications, particularly in supercapacitors. X-ray diffraction analysis confirms the structural integrity and phase purity of the samples, exhibiting the characteristic peaks of the cubic spinel structure. X-ray photoelectron spectroscopy confirms the presence of Co, Ni, and O elements, with different valence states observed. Scanning electron microscope images reveal irregular nano-flakes with increased particle size and reduced porosity as the Ni doping concentration rises. The surface properties of nickel-doped cobalt oxide (Co 3 O 4 ) nanoparticles are investigated through Brunauer–Emmett–Teller (BET) analysis. The research focuses on elucidating the specific surface area and adsorption characteristics, providing insights into the structural and textural features of the Ni-doped Co 3 O 4 nanomaterials. Electrochemical analysis, including cyclic voltammetry and galvanostatic charge–discharge tests, demonstrates promising performance. Specifically, the 3 wt% Ni-doped Co 3 O 4 sample exhibits a maximum specific capacitance of 299 F/g at a scan rate of 5 mV/s. The galvanostatic charge–discharge (GCD) profiles of all three Ni-doped Co 3 O 4 nanoparticles were carried out, revealing quasi-triangular charge–discharge curves attributed to both pseudo capacitive and electric double-layer processes. Moreover, the 3% Ni-doped Co 3 O 4 nanoparticles demonstrate a maximum specific capacitance of 347 F/g at a scan rate of 1.5 A/g. Additionally, the 5% Ni-doped Co 3 O 4 nanoparticles exhibit an impressive capacity retention of 90% even after 5000 cycles. Our findings indicate that appropriate Ni doping on Co 3 O 4 nanoparticles enhances their electrochemical performance, showing great potential for supercapacitor applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05417-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2024-04, Vol.30 (4), p.2069-2082
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_3035135890
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Capacitance
Chemistry
Chemistry and Materials Science
Cobalt oxides
Condensed Matter Physics
Discharge
Doping
Electrochemical analysis
Electrochemistry
Electrons
Energy Storage
Nanomaterials
Nanoparticles
Nickel
Optical and Electronic Materials
Photoelectrons
Renewable and Green Energy
Structural integrity
Supercapacitors
Surface properties
Valence
X ray photoelectron spectroscopy
title Effect of Nickel doping on Cobalt Oxide nanoparticles for energy storage applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T07%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Nickel%20doping%20on%20Cobalt%20Oxide%20nanoparticles%20for%20energy%20storage%20applications&rft.jtitle=Ionics&rft.au=Karthikeyan,%20A.&rft.date=2024-04-01&rft.volume=30&rft.issue=4&rft.spage=2069&rft.epage=2082&rft.pages=2069-2082&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05417-4&rft_dat=%3Cproquest_cross%3E3035135890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-ded8fa1f53b74e195cdfb5edda1c8ecaee21c44792c83a634694a542be42ca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035135890&rft_id=info:pmid/&rfr_iscdi=true