Loading…
An Optimal Minimization Problem in the Lowest Landau Level and Related Questions
We solve a minimization problem related to the cubic Lowest Landau level equation, which is used in the study of Bose–Einstein condensation. We provide an optimal condition for the Gaussian to be the unique global minimizer. This extends previous results from P. Gérard, P. Germain and L. Thomann. We...
Saved in:
Published in: | Communications in mathematical physics 2024-04, Vol.405 (4), Article 98 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-7e82cbccc02f449642aad6b095d7ccfe1bfb31a4f1b90eacc57796471c4b3bd03 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Communications in mathematical physics |
container_volume | 405 |
creator | Schwinte, Valentin |
description | We solve a minimization problem related to the cubic Lowest Landau level equation, which is used in the study of Bose–Einstein condensation. We provide an optimal condition for the Gaussian to be the unique global minimizer. This extends previous results from P. Gérard, P. Germain and L. Thomann. We then provide another condition so that the second special Hermite function is a global minimizer. |
doi_str_mv | 10.1007/s00220-024-04974-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3035136359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035136359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7e82cbccc02f449642aad6b095d7ccfe1bfb31a4f1b90eacc57796471c4b3bd03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMYmzLMUXjFhF1yHJZHTKNFOTqWJ_vakjuHN1L9zvnMM9CJ1SOKcA6iIBMAYEmCAgSiXIdg9NqOCMQEnlPpoAUCBcUnmIjlJaAkDJpJygxSzgh_XQrkyH79vQrtqtGdo-4EXsbedXuA14ePO46j99GnBlQm02uPIfvsN5x0--M4Ov8eMmn7MuHaODxnTJn_zOKXq5vnqe35Lq4eZuPquIYwoGovwlc9Y5B6wRopSCGVNLC2VRK-caT21jOTWiobYEb5wrlMqUok5YbmvgU3Q2-q5j_74L18t-E0OO1Bx4QbnkRZkpNlIu9ilF3-h1zL_GL01B75rTY3M6N6d_mtPbLOKjKGU4vPr4Z_2P6htT7HHy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035136359</pqid></control><display><type>article</type><title>An Optimal Minimization Problem in the Lowest Landau Level and Related Questions</title><source>Springer Nature</source><creator>Schwinte, Valentin</creator><creatorcontrib>Schwinte, Valentin</creatorcontrib><description>We solve a minimization problem related to the cubic Lowest Landau level equation, which is used in the study of Bose–Einstein condensation. We provide an optimal condition for the Gaussian to be the unique global minimizer. This extends previous results from P. Gérard, P. Germain and L. Thomann. We then provide another condition so that the second special Hermite function is a global minimizer.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-024-04974-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Mathematical and Computational Physics ; Mathematical Physics ; Optimization ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2024-04, Vol.405 (4), Article 98</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-7e82cbccc02f449642aad6b095d7ccfe1bfb31a4f1b90eacc57796471c4b3bd03</cites><orcidid>0009-0000-2231-5749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schwinte, Valentin</creatorcontrib><title>An Optimal Minimization Problem in the Lowest Landau Level and Related Questions</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We solve a minimization problem related to the cubic Lowest Landau level equation, which is used in the study of Bose–Einstein condensation. We provide an optimal condition for the Gaussian to be the unique global minimizer. This extends previous results from P. Gérard, P. Germain and L. Thomann. We then provide another condition so that the second special Hermite function is a global minimizer.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMYmzLMUXjFhF1yHJZHTKNFOTqWJ_vakjuHN1L9zvnMM9CJ1SOKcA6iIBMAYEmCAgSiXIdg9NqOCMQEnlPpoAUCBcUnmIjlJaAkDJpJygxSzgh_XQrkyH79vQrtqtGdo-4EXsbedXuA14ePO46j99GnBlQm02uPIfvsN5x0--M4Ov8eMmn7MuHaODxnTJn_zOKXq5vnqe35Lq4eZuPquIYwoGovwlc9Y5B6wRopSCGVNLC2VRK-caT21jOTWiobYEb5wrlMqUok5YbmvgU3Q2-q5j_74L18t-E0OO1Bx4QbnkRZkpNlIu9ilF3-h1zL_GL01B75rTY3M6N6d_mtPbLOKjKGU4vPr4Z_2P6htT7HHy</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Schwinte, Valentin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-2231-5749</orcidid></search><sort><creationdate>20240401</creationdate><title>An Optimal Minimization Problem in the Lowest Landau Level and Related Questions</title><author>Schwinte, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7e82cbccc02f449642aad6b095d7ccfe1bfb31a4f1b90eacc57796471c4b3bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwinte, Valentin</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwinte, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Minimization Problem in the Lowest Landau Level and Related Questions</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>405</volume><issue>4</issue><artnum>98</artnum><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We solve a minimization problem related to the cubic Lowest Landau level equation, which is used in the study of Bose–Einstein condensation. We provide an optimal condition for the Gaussian to be the unique global minimizer. This extends previous results from P. Gérard, P. Germain and L. Thomann. We then provide another condition so that the second special Hermite function is a global minimizer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-024-04974-z</doi><orcidid>https://orcid.org/0009-0000-2231-5749</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2024-04, Vol.405 (4), Article 98 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_3035136359 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Complex Systems Mathematical and Computational Physics Mathematical Physics Optimization Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | An Optimal Minimization Problem in the Lowest Landau Level and Related Questions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Minimization%20Problem%20in%20the%20Lowest%20Landau%20Level%20and%20Related%20Questions&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Schwinte,%20Valentin&rft.date=2024-04-01&rft.volume=405&rft.issue=4&rft.artnum=98&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-024-04974-z&rft_dat=%3Cproquest_cross%3E3035136359%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-7e82cbccc02f449642aad6b095d7ccfe1bfb31a4f1b90eacc57796471c4b3bd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035136359&rft_id=info:pmid/&rfr_iscdi=true |