Loading…

AI-Enhanced Generalizable Scheme for Path Loss Prediction in LoRaWAN

Long-range wide-area network (LoRaWAN) is a widely used technology in the Internet of Things (IoT), which provides long-range (LoRa) communication with low power consumption. In LoRaWAN, an accurate path loss (PL) model is essential to realize link budget and network coverage planning. In this artic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2024-04, Vol.11 (8), p.14593-14606
Main Authors: Chen, Mingyu, Zhang, Yan, Ji, Zijie, Briso-Rodriguez, Cesar, Zhang, Kaien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-fd39504af995d23ed286e9a33877d55bd8e902fad5fc10353354ed361cf1c38f3
container_end_page 14606
container_issue 8
container_start_page 14593
container_title IEEE internet of things journal
container_volume 11
creator Chen, Mingyu
Zhang, Yan
Ji, Zijie
Briso-Rodriguez, Cesar
Zhang, Kaien
description Long-range wide-area network (LoRaWAN) is a widely used technology in the Internet of Things (IoT), which provides long-range (LoRa) communication with low power consumption. In LoRaWAN, an accurate path loss (PL) model is essential to realize link budget and network coverage planning. In this article, we present an artificial intelligence (AI)-enhanced generalizable scheme for PL prediction in LoRaWAN. We propose a network that performs corrective adjustments to improve the PL estimates of empirical models. The network termed STransRadio benefits from the self-attention computation in Swin Transformer to model the LoRa correlation about propagation for enhancing the adjustment prediction accuracy. To generalize our scheme to new scenarios, an multiscenario deep transfer learning (MDTL) algorithm is proposed, which finetunes the pretrained STransRadio network with limited data. We conduct simulations and measurements in the 868-MHz bands to assess the performance of the scheme in terms of prediction accuracy and generalization ability. The effectiveness of the proposed scheme has been verified with both simulations and measurements. Moreover, the STransRadio network in the scheme outperforms the convolutional neural network (CNN) and deep vision transformer (DeepViT). With the MDTL algorithm, our scheme can achieve excellent prediction performances when it is applied in a new scenario with limited training data. Furthermore, we verify that the scheme utilized in the simulated scenario can be transferred to both the new simulated scenario and the realistic scenario. With only 100 samples, the scheme achieves root mean square error (RMSE) values of 7.27 and 5.96 dB between the predicted and actual PL, respectively.
doi_str_mv 10.1109/JIOT.2023.3342984
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3035274584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10360203</ieee_id><sourcerecordid>3035274584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fd39504af995d23ed286e9a33877d55bd8e902fad5fc10353354ed361cf1c38f3</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhhujiQR5ABMPm3hebDvt7vZIEHENEaIYj01pp2EJ7GJ3OejTWwIHTjOZfP_M5CPkntEhY1Q9vZXz5ZBTDkMAwVUhrkiPA89TkWX8-qK_JYO23VBKY0wylfXI86hMJ_Xa1BZdMsUag9lWf2a1xeTTrnGHiW9CsjDdOpk1bZssArrKdlVTJ1UdRx_me_R-R2682bY4ONc--XqZLMev6Ww-LcejWWq5yLrUO1CSCuOVko4DOl5kqAxAkedOypUrUFHujZPeMgoSQAp0kDHrmYXCQ588nvbuQ_NzwLbTm-YQ6nhSQ-R5LmQhIsVOlA3x44Be70O1M-FXM6qPvvTRlz760mdfMfNwylSIeMFDRjkF-Ac6dmRi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035274584</pqid></control><display><type>article</type><title>AI-Enhanced Generalizable Scheme for Path Loss Prediction in LoRaWAN</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Mingyu ; Zhang, Yan ; Ji, Zijie ; Briso-Rodriguez, Cesar ; Zhang, Kaien</creator><creatorcontrib>Chen, Mingyu ; Zhang, Yan ; Ji, Zijie ; Briso-Rodriguez, Cesar ; Zhang, Kaien</creatorcontrib><description>Long-range wide-area network (LoRaWAN) is a widely used technology in the Internet of Things (IoT), which provides long-range (LoRa) communication with low power consumption. In LoRaWAN, an accurate path loss (PL) model is essential to realize link budget and network coverage planning. In this article, we present an artificial intelligence (AI)-enhanced generalizable scheme for PL prediction in LoRaWAN. We propose a network that performs corrective adjustments to improve the PL estimates of empirical models. The network termed STransRadio benefits from the self-attention computation in Swin Transformer to model the LoRa correlation about propagation for enhancing the adjustment prediction accuracy. To generalize our scheme to new scenarios, an multiscenario deep transfer learning (MDTL) algorithm is proposed, which finetunes the pretrained STransRadio network with limited data. We conduct simulations and measurements in the 868-MHz bands to assess the performance of the scheme in terms of prediction accuracy and generalization ability. The effectiveness of the proposed scheme has been verified with both simulations and measurements. Moreover, the STransRadio network in the scheme outperforms the convolutional neural network (CNN) and deep vision transformer (DeepViT). With the MDTL algorithm, our scheme can achieve excellent prediction performances when it is applied in a new scenario with limited training data. Furthermore, we verify that the scheme utilized in the simulated scenario can be transferred to both the new simulated scenario and the realistic scenario. With only 100 samples, the scheme achieves root mean square error (RMSE) values of 7.27 and 5.96 dB between the predicted and actual PL, respectively.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3342984</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Buildings ; Computational modeling ; Computer simulation ; Data models ; Feature extraction ; Internet of Things ; Internet of Things (IoT) ; long-range (LoRa) ; Machine learning ; path loss (PL) ; Power consumption ; Prediction algorithms ; Predictive models ; Root-mean-square errors ; swin transformer ; transfer learning ; Wide area networks</subject><ispartof>IEEE internet of things journal, 2024-04, Vol.11 (8), p.14593-14606</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-fd39504af995d23ed286e9a33877d55bd8e902fad5fc10353354ed361cf1c38f3</cites><orcidid>0000-0001-8219-9110 ; 0000-0001-5213-3380 ; 0009-0009-1873-0873 ; 0000-0002-2168-9674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10360203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Chen, Mingyu</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Ji, Zijie</creatorcontrib><creatorcontrib>Briso-Rodriguez, Cesar</creatorcontrib><creatorcontrib>Zhang, Kaien</creatorcontrib><title>AI-Enhanced Generalizable Scheme for Path Loss Prediction in LoRaWAN</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Long-range wide-area network (LoRaWAN) is a widely used technology in the Internet of Things (IoT), which provides long-range (LoRa) communication with low power consumption. In LoRaWAN, an accurate path loss (PL) model is essential to realize link budget and network coverage planning. In this article, we present an artificial intelligence (AI)-enhanced generalizable scheme for PL prediction in LoRaWAN. We propose a network that performs corrective adjustments to improve the PL estimates of empirical models. The network termed STransRadio benefits from the self-attention computation in Swin Transformer to model the LoRa correlation about propagation for enhancing the adjustment prediction accuracy. To generalize our scheme to new scenarios, an multiscenario deep transfer learning (MDTL) algorithm is proposed, which finetunes the pretrained STransRadio network with limited data. We conduct simulations and measurements in the 868-MHz bands to assess the performance of the scheme in terms of prediction accuracy and generalization ability. The effectiveness of the proposed scheme has been verified with both simulations and measurements. Moreover, the STransRadio network in the scheme outperforms the convolutional neural network (CNN) and deep vision transformer (DeepViT). With the MDTL algorithm, our scheme can achieve excellent prediction performances when it is applied in a new scenario with limited training data. Furthermore, we verify that the scheme utilized in the simulated scenario can be transferred to both the new simulated scenario and the realistic scenario. With only 100 samples, the scheme achieves root mean square error (RMSE) values of 7.27 and 5.96 dB between the predicted and actual PL, respectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Buildings</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>long-range (LoRa)</subject><subject>Machine learning</subject><subject>path loss (PL)</subject><subject>Power consumption</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Root-mean-square errors</subject><subject>swin transformer</subject><subject>transfer learning</subject><subject>Wide area networks</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOAjEQhhujiQR5ABMPm3hebDvt7vZIEHENEaIYj01pp2EJ7GJ3OejTWwIHTjOZfP_M5CPkntEhY1Q9vZXz5ZBTDkMAwVUhrkiPA89TkWX8-qK_JYO23VBKY0wylfXI86hMJ_Xa1BZdMsUag9lWf2a1xeTTrnGHiW9CsjDdOpk1bZssArrKdlVTJ1UdRx_me_R-R2682bY4ONc--XqZLMev6Ww-LcejWWq5yLrUO1CSCuOVko4DOl5kqAxAkedOypUrUFHujZPeMgoSQAp0kDHrmYXCQ588nvbuQ_NzwLbTm-YQ6nhSQ-R5LmQhIsVOlA3x44Be70O1M-FXM6qPvvTRlz760mdfMfNwylSIeMFDRjkF-Ac6dmRi</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Chen, Mingyu</creator><creator>Zhang, Yan</creator><creator>Ji, Zijie</creator><creator>Briso-Rodriguez, Cesar</creator><creator>Zhang, Kaien</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8219-9110</orcidid><orcidid>https://orcid.org/0000-0001-5213-3380</orcidid><orcidid>https://orcid.org/0009-0009-1873-0873</orcidid><orcidid>https://orcid.org/0000-0002-2168-9674</orcidid></search><sort><creationdate>20240415</creationdate><title>AI-Enhanced Generalizable Scheme for Path Loss Prediction in LoRaWAN</title><author>Chen, Mingyu ; Zhang, Yan ; Ji, Zijie ; Briso-Rodriguez, Cesar ; Zhang, Kaien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fd39504af995d23ed286e9a33877d55bd8e902fad5fc10353354ed361cf1c38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Buildings</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>long-range (LoRa)</topic><topic>Machine learning</topic><topic>path loss (PL)</topic><topic>Power consumption</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Root-mean-square errors</topic><topic>swin transformer</topic><topic>transfer learning</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mingyu</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Ji, Zijie</creatorcontrib><creatorcontrib>Briso-Rodriguez, Cesar</creatorcontrib><creatorcontrib>Zhang, Kaien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mingyu</au><au>Zhang, Yan</au><au>Ji, Zijie</au><au>Briso-Rodriguez, Cesar</au><au>Zhang, Kaien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-Enhanced Generalizable Scheme for Path Loss Prediction in LoRaWAN</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-04-15</date><risdate>2024</risdate><volume>11</volume><issue>8</issue><spage>14593</spage><epage>14606</epage><pages>14593-14606</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Long-range wide-area network (LoRaWAN) is a widely used technology in the Internet of Things (IoT), which provides long-range (LoRa) communication with low power consumption. In LoRaWAN, an accurate path loss (PL) model is essential to realize link budget and network coverage planning. In this article, we present an artificial intelligence (AI)-enhanced generalizable scheme for PL prediction in LoRaWAN. We propose a network that performs corrective adjustments to improve the PL estimates of empirical models. The network termed STransRadio benefits from the self-attention computation in Swin Transformer to model the LoRa correlation about propagation for enhancing the adjustment prediction accuracy. To generalize our scheme to new scenarios, an multiscenario deep transfer learning (MDTL) algorithm is proposed, which finetunes the pretrained STransRadio network with limited data. We conduct simulations and measurements in the 868-MHz bands to assess the performance of the scheme in terms of prediction accuracy and generalization ability. The effectiveness of the proposed scheme has been verified with both simulations and measurements. Moreover, the STransRadio network in the scheme outperforms the convolutional neural network (CNN) and deep vision transformer (DeepViT). With the MDTL algorithm, our scheme can achieve excellent prediction performances when it is applied in a new scenario with limited training data. Furthermore, we verify that the scheme utilized in the simulated scenario can be transferred to both the new simulated scenario and the realistic scenario. With only 100 samples, the scheme achieves root mean square error (RMSE) values of 7.27 and 5.96 dB between the predicted and actual PL, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3342984</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8219-9110</orcidid><orcidid>https://orcid.org/0000-0001-5213-3380</orcidid><orcidid>https://orcid.org/0009-0009-1873-0873</orcidid><orcidid>https://orcid.org/0000-0002-2168-9674</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-04, Vol.11 (8), p.14593-14606
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_3035274584
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Buildings
Computational modeling
Computer simulation
Data models
Feature extraction
Internet of Things
Internet of Things (IoT)
long-range (LoRa)
Machine learning
path loss (PL)
Power consumption
Prediction algorithms
Predictive models
Root-mean-square errors
swin transformer
transfer learning
Wide area networks
title AI-Enhanced Generalizable Scheme for Path Loss Prediction in LoRaWAN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-Enhanced%20Generalizable%20Scheme%20for%20Path%20Loss%20Prediction%20in%20LoRaWAN&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chen,%20Mingyu&rft.date=2024-04-15&rft.volume=11&rft.issue=8&rft.spage=14593&rft.epage=14606&rft.pages=14593-14606&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3342984&rft_dat=%3Cproquest_cross%3E3035274584%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-fd39504af995d23ed286e9a33877d55bd8e902fad5fc10353354ed361cf1c38f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035274584&rft_id=info:pmid/&rft_ieee_id=10360203&rfr_iscdi=true