Loading…
Instability of quadratic band degeneracies and the emergence of Dirac points
Consider the Schr\"{o}dinger operator \(H = -\Delta + V\), where the potential \(V\) is real, \(\mathbb{Z}^2\)-periodic, and additionally invariant under the symmetry group of the square. We show that, under typical small linear deformations of \(V\), the quadratic band degeneracy points occurr...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chaban, Jonah Weinstein, Michael I |
description | Consider the Schr\"{o}dinger operator \(H = -\Delta + V\), where the potential \(V\) is real, \(\mathbb{Z}^2\)-periodic, and additionally invariant under the symmetry group of the square. We show that, under typical small linear deformations of \(V\), the quadratic band degeneracy points occurring over the high-symmetry quasimomentum \(\boldsymbol{M}\) (see [27, 28]) each split into two separated degeneracies over perturbed quasimomenta \(\boldsymbol{D}^+\) and \(\boldsymbol{D}^-\), and that these degeneracies are Dirac points. The local character of the degenerate dispersion surfaces about the emergent Dirac points are tilted, elliptical cones. Correspondingly, the dynamics of wavepackets spectrally localized near either \(\boldsymbol{D}^+\) or \(\boldsymbol{D}^-\) are governed by a system of Dirac equations with an advection term. Symmetry-breaking perturbations and induced band topology are also discussed. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3035343109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035343109</sourcerecordid><originalsourceid>FETCH-proquest_journals_30353431093</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMgWLT_MOC6EDOtj7UPFFy6L2k71ZSatJl04d_bgh_g6sI5585EpBA3yT5VaiFi5kZKqbY7lWUYifvNctCFaU34gKuhH3TldTAlFNpWUNGTLHldGmKYQHgR0Jv8iEuaDiczWuicsYFXYl7rlin-7VKsL-fH8Zp03vUDccgbN3g7qhwlZpjiRh7wv-oLT1E9Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035343109</pqid></control><display><type>article</type><title>Instability of quadratic band degeneracies and the emergence of Dirac points</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Chaban, Jonah ; Weinstein, Michael I</creator><creatorcontrib>Chaban, Jonah ; Weinstein, Michael I</creatorcontrib><description>Consider the Schr\"{o}dinger operator \(H = -\Delta + V\), where the potential \(V\) is real, \(\mathbb{Z}^2\)-periodic, and additionally invariant under the symmetry group of the square. We show that, under typical small linear deformations of \(V\), the quadratic band degeneracy points occurring over the high-symmetry quasimomentum \(\boldsymbol{M}\) (see [27, 28]) each split into two separated degeneracies over perturbed quasimomenta \(\boldsymbol{D}^+\) and \(\boldsymbol{D}^-\), and that these degeneracies are Dirac points. The local character of the degenerate dispersion surfaces about the emergent Dirac points are tilted, elliptical cones. Correspondingly, the dynamics of wavepackets spectrally localized near either \(\boldsymbol{D}^+\) or \(\boldsymbol{D}^-\) are governed by a system of Dirac equations with an advection term. Symmetry-breaking perturbations and induced band topology are also discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conjugation ; Wave packets</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3035343109?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chaban, Jonah</creatorcontrib><creatorcontrib>Weinstein, Michael I</creatorcontrib><title>Instability of quadratic band degeneracies and the emergence of Dirac points</title><title>arXiv.org</title><description>Consider the Schr\"{o}dinger operator \(H = -\Delta + V\), where the potential \(V\) is real, \(\mathbb{Z}^2\)-periodic, and additionally invariant under the symmetry group of the square. We show that, under typical small linear deformations of \(V\), the quadratic band degeneracy points occurring over the high-symmetry quasimomentum \(\boldsymbol{M}\) (see [27, 28]) each split into two separated degeneracies over perturbed quasimomenta \(\boldsymbol{D}^+\) and \(\boldsymbol{D}^-\), and that these degeneracies are Dirac points. The local character of the degenerate dispersion surfaces about the emergent Dirac points are tilted, elliptical cones. Correspondingly, the dynamics of wavepackets spectrally localized near either \(\boldsymbol{D}^+\) or \(\boldsymbol{D}^-\) are governed by a system of Dirac equations with an advection term. Symmetry-breaking perturbations and induced band topology are also discussed.</description><subject>Conjugation</subject><subject>Wave packets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sKwjAQRYMgWLT_MOC6EDOtj7UPFFy6L2k71ZSatJl04d_bgh_g6sI5585EpBA3yT5VaiFi5kZKqbY7lWUYifvNctCFaU34gKuhH3TldTAlFNpWUNGTLHldGmKYQHgR0Jv8iEuaDiczWuicsYFXYl7rlin-7VKsL-fH8Zp03vUDccgbN3g7qhwlZpjiRh7wv-oLT1E9Vg</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Chaban, Jonah</creator><creator>Weinstein, Michael I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241014</creationdate><title>Instability of quadratic band degeneracies and the emergence of Dirac points</title><author>Chaban, Jonah ; Weinstein, Michael I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30353431093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conjugation</topic><topic>Wave packets</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaban, Jonah</creatorcontrib><creatorcontrib>Weinstein, Michael I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaban, Jonah</au><au>Weinstein, Michael I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Instability of quadratic band degeneracies and the emergence of Dirac points</atitle><jtitle>arXiv.org</jtitle><date>2024-10-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Consider the Schr\"{o}dinger operator \(H = -\Delta + V\), where the potential \(V\) is real, \(\mathbb{Z}^2\)-periodic, and additionally invariant under the symmetry group of the square. We show that, under typical small linear deformations of \(V\), the quadratic band degeneracy points occurring over the high-symmetry quasimomentum \(\boldsymbol{M}\) (see [27, 28]) each split into two separated degeneracies over perturbed quasimomenta \(\boldsymbol{D}^+\) and \(\boldsymbol{D}^-\), and that these degeneracies are Dirac points. The local character of the degenerate dispersion surfaces about the emergent Dirac points are tilted, elliptical cones. Correspondingly, the dynamics of wavepackets spectrally localized near either \(\boldsymbol{D}^+\) or \(\boldsymbol{D}^-\) are governed by a system of Dirac equations with an advection term. Symmetry-breaking perturbations and induced band topology are also discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3035343109 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Conjugation Wave packets |
title | Instability of quadratic band degeneracies and the emergence of Dirac points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Instability%20of%20quadratic%20band%20degeneracies%20and%20the%20emergence%20of%20Dirac%20points&rft.jtitle=arXiv.org&rft.au=Chaban,%20Jonah&rft.date=2024-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3035343109%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30353431093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035343109&rft_id=info:pmid/&rfr_iscdi=true |