Loading…
Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks
Insect-inspired sensor fusion algorithms have presented a promising avenue in the development of robust and efficient systems, owing to the insects' ability to process numerous streams of noisy sensory data. The ring attractor neural network architecture has been identified as a noteworthy mode...
Saved in:
Published in: | Journal of intelligent & robotic systems 2024-06, Vol.110 (2), p.60, Article 60 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-3966d4d8120c53d8162d1f823e60c0240a12064fed6d9aabb5277698b7479b93 |
container_end_page | |
container_issue | 2 |
container_start_page | 60 |
container_title | Journal of intelligent & robotic systems |
container_volume | 110 |
creator | Hassani. N, S. M. Mehdi Roshanian, Jafar |
description | Insect-inspired sensor fusion algorithms have presented a promising avenue in the development of robust and efficient systems, owing to the insects' ability to process numerous streams of noisy sensory data. The ring attractor neural network architecture has been identified as a noteworthy model for the optimal integration of diverse insect sensors. Expanding on this, our research presents an innovative bio-inspired ring attractor neural network architecture designed to augment the performance of microsatellite attitude determination systems through the fusion of data from multiple gyroscopic sensors.Extensive simulations using a nonlinear model of the microsatellite, while incorporating specific navigational disturbances, have been conducted to ascertain the viability and effectiveness of this approach. The results obtained have been superior to those of alternative methodologies, thus highlighting the potential of our proposed bio-inspired fusion technique. The findings indicate that this approach could significantly improve the accuracy and robustness of microsatellite systems across a wide range of applications. |
doi_str_mv | 10.1007/s10846-024-02089-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037196706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037196706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3966d4d8120c53d8162d1f823e60c0240a12064fed6d9aabb5277698b7479b93</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIQOEHOFniwCmwjhMn5sajQCUeh_ZuuYnTpg12sR2g_Ao_y5YgwYmDNWPtzOzaG0VHFE4pQH7mKRQpjyFJ8UAhYtiK9miWsxhSENt_-G607_0CAESRib3oc2SMfVWhedVk-L5qrUNuDbE1UeSysfHI-FXjdEXG2njryE3nN_WLdmZdE-bP52Ro5sqUjZmRh6Z0loxV0G3bBI1aU27SFN7WJMyd7WZzMrGd08Ev1yeeXOtSm-BQ8IEtHnWHFCG8Wbf0B9FOrVqvD39wEE1uhpOru_j-6XZ0dXEfl4ymIWaC8yqtCppAmTFEnlS0LhKmOZT4I6CwwtNaV7wSSk2nWZLnXBTTPM3FVLBBdNzHrpx96bQPcoET4tBeMmA5FTwHjqqkV-ETvXe6livXPCu3lhTkZgey34HEjvJ7BxLQxHqTR7GZafcb_Y_rC12yjGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037196706</pqid></control><display><type>article</type><title>Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks</title><source>Springer Nature</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Hassani. N, S. M. Mehdi ; Roshanian, Jafar</creator><creatorcontrib>Hassani. N, S. M. Mehdi ; Roshanian, Jafar</creatorcontrib><description>Insect-inspired sensor fusion algorithms have presented a promising avenue in the development of robust and efficient systems, owing to the insects' ability to process numerous streams of noisy sensory data. The ring attractor neural network architecture has been identified as a noteworthy model for the optimal integration of diverse insect sensors. Expanding on this, our research presents an innovative bio-inspired ring attractor neural network architecture designed to augment the performance of microsatellite attitude determination systems through the fusion of data from multiple gyroscopic sensors.Extensive simulations using a nonlinear model of the microsatellite, while incorporating specific navigational disturbances, have been conducted to ascertain the viability and effectiveness of this approach. The results obtained have been superior to those of alternative methodologies, thus highlighting the potential of our proposed bio-inspired fusion technique. The findings indicate that this approach could significantly improve the accuracy and robustness of microsatellite systems across a wide range of applications.</description><identifier>ISSN: 1573-0409</identifier><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-024-02089-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Biomimetics ; Control ; Electrical Engineering ; Engineering ; Insects ; Mechanical Engineering ; Mechatronics ; Microsatellites ; Multisensor fusion ; Neural networks ; Regular Paper ; Robotics ; Sensors</subject><ispartof>Journal of intelligent & robotic systems, 2024-06, Vol.110 (2), p.60, Article 60</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3966d4d8120c53d8162d1f823e60c0240a12064fed6d9aabb5277698b7479b93</cites><orcidid>0009-0007-2096-3735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hassani. N, S. M. Mehdi</creatorcontrib><creatorcontrib>Roshanian, Jafar</creatorcontrib><title>Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Insect-inspired sensor fusion algorithms have presented a promising avenue in the development of robust and efficient systems, owing to the insects' ability to process numerous streams of noisy sensory data. The ring attractor neural network architecture has been identified as a noteworthy model for the optimal integration of diverse insect sensors. Expanding on this, our research presents an innovative bio-inspired ring attractor neural network architecture designed to augment the performance of microsatellite attitude determination systems through the fusion of data from multiple gyroscopic sensors.Extensive simulations using a nonlinear model of the microsatellite, while incorporating specific navigational disturbances, have been conducted to ascertain the viability and effectiveness of this approach. The results obtained have been superior to those of alternative methodologies, thus highlighting the potential of our proposed bio-inspired fusion technique. The findings indicate that this approach could significantly improve the accuracy and robustness of microsatellite systems across a wide range of applications.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biomimetics</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Insects</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Microsatellites</subject><subject>Multisensor fusion</subject><subject>Neural networks</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Sensors</subject><issn>1573-0409</issn><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQjBBIQOEHOFniwCmwjhMn5sajQCUeh_ZuuYnTpg12sR2g_Ao_y5YgwYmDNWPtzOzaG0VHFE4pQH7mKRQpjyFJ8UAhYtiK9miWsxhSENt_-G607_0CAESRib3oc2SMfVWhedVk-L5qrUNuDbE1UeSysfHI-FXjdEXG2njryE3nN_WLdmZdE-bP52Ro5sqUjZmRh6Z0loxV0G3bBI1aU27SFN7WJMyd7WZzMrGd08Ev1yeeXOtSm-BQ8IEtHnWHFCG8Wbf0B9FOrVqvD39wEE1uhpOru_j-6XZ0dXEfl4ymIWaC8yqtCppAmTFEnlS0LhKmOZT4I6CwwtNaV7wSSk2nWZLnXBTTPM3FVLBBdNzHrpx96bQPcoET4tBeMmA5FTwHjqqkV-ETvXe6livXPCu3lhTkZgey34HEjvJ7BxLQxHqTR7GZafcb_Y_rC12yjGY</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Hassani. N, S. M. Mehdi</creator><creator>Roshanian, Jafar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0007-2096-3735</orcidid></search><sort><creationdate>20240601</creationdate><title>Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks</title><author>Hassani. N, S. M. Mehdi ; Roshanian, Jafar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3966d4d8120c53d8162d1f823e60c0240a12064fed6d9aabb5277698b7479b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biomimetics</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Insects</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Microsatellites</topic><topic>Multisensor fusion</topic><topic>Neural networks</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassani. N, S. M. Mehdi</creatorcontrib><creatorcontrib>Roshanian, Jafar</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassani. N, S. M. Mehdi</au><au>Roshanian, Jafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>110</volume><issue>2</issue><spage>60</spage><pages>60-</pages><artnum>60</artnum><issn>1573-0409</issn><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Insect-inspired sensor fusion algorithms have presented a promising avenue in the development of robust and efficient systems, owing to the insects' ability to process numerous streams of noisy sensory data. The ring attractor neural network architecture has been identified as a noteworthy model for the optimal integration of diverse insect sensors. Expanding on this, our research presents an innovative bio-inspired ring attractor neural network architecture designed to augment the performance of microsatellite attitude determination systems through the fusion of data from multiple gyroscopic sensors.Extensive simulations using a nonlinear model of the microsatellite, while incorporating specific navigational disturbances, have been conducted to ascertain the viability and effectiveness of this approach. The results obtained have been superior to those of alternative methodologies, thus highlighting the potential of our proposed bio-inspired fusion technique. The findings indicate that this approach could significantly improve the accuracy and robustness of microsatellite systems across a wide range of applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-024-02089-0</doi><orcidid>https://orcid.org/0009-0007-2096-3735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-0409 |
ispartof | Journal of intelligent & robotic systems, 2024-06, Vol.110 (2), p.60, Article 60 |
issn | 1573-0409 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_3037196706 |
source | Springer Nature; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Algorithms Artificial Intelligence Biomimetics Control Electrical Engineering Engineering Insects Mechanical Engineering Mechatronics Microsatellites Multisensor fusion Neural networks Regular Paper Robotics Sensors |
title | Innovative Exploration of a Bio-Inspired Sensor Fusion Algorithm: Enhancing Micro Satellite Functionality through Touretsky's Decentralized Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20Exploration%20of%20a%20Bio-Inspired%20Sensor%20Fusion%20Algorithm:%20Enhancing%20Micro%20Satellite%20Functionality%20through%20Touretsky's%20Decentralized%20Neural%20Networks&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Hassani.%20N,%20S.%20M.%20Mehdi&rft.date=2024-06-01&rft.volume=110&rft.issue=2&rft.spage=60&rft.pages=60-&rft.artnum=60&rft.issn=1573-0409&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-024-02089-0&rft_dat=%3Cproquest_cross%3E3037196706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-3966d4d8120c53d8162d1f823e60c0240a12064fed6d9aabb5277698b7479b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037196706&rft_id=info:pmid/&rfr_iscdi=true |