Loading…
Novel olive stone biochar particle network for piezoresistive strain sensing in natural fiber‐reinforced composites
Natural fiber‐reinforced composites (NFRCs) suffer from water absorption and low temperature stability, resulting in fiber degradation and subsequent material failure. Built‐in piezoresistive sensors are investigated to monitor the deformation/strain of the component. As a low‐cost material from ren...
Saved in:
Published in: | Polymer composites 2024-04, Vol.45 (6), p.5737-5753 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural fiber‐reinforced composites (NFRCs) suffer from water absorption and low temperature stability, resulting in fiber degradation and subsequent material failure. Built‐in piezoresistive sensors are investigated to monitor the deformation/strain of the component. As a low‐cost material from renewable resources biochar particles derived from olive stones were applied on flax plies and yarn bundles that served as model systems. Carbon black samples as petrochemical variants were used as a reference material. Biochar and carbon black‐covered fiber systems were laminated in epoxy resin followed by tensile tests. The electrical resistance was recorded simultaneously during testing. Biochar with a broad size distribution from nano to high micrometer range (D |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.28160 |