Loading…

Analytical Design of Gaussian Anisotropic 2D FIR Filters and Their Implementation Using the Block Filtering Approach

This work proposes an analytical design procedure for a particular class of 2D filters, namely anisotropic Gaussian FIR filters. The design is achieved in the frequency domain and starts from a low-pass Gaussian 1D prototype with imposed specifications, whose frequency response is efficiently approx...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-04, Vol.13 (7), p.1243
Main Authors: Matei, Radu, Chiper, Doru Florin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c241t-ac56f41aa72eb79d7be867d1497ae44a18867ab936e5c9f0a29365416ceae70f3
container_end_page
container_issue 7
container_start_page 1243
container_title Electronics (Basel)
container_volume 13
creator Matei, Radu
Chiper, Doru Florin
description This work proposes an analytical design procedure for a particular class of 2D filters, namely anisotropic Gaussian FIR filters. The design is achieved in the frequency domain and starts from a low-pass Gaussian 1D prototype with imposed specifications, whose frequency response is efficiently approximated by a factored trigonometric polynomial using the Chebyshev series. Then, using specific 1D to 2D frequency mappings applied to the prototype, the frequency response for a 2D anisotropic filter with a specified orientation angle is directly derived in two versions, namely with a straight or elliptical shape in the frequency plane. The resulting filters have an accurate shape with low distortion. Several design examples for specified parameters (angle and selectivity) are provided. Then, simulations of directional filtering on various test images are given, which show their capability of extracting oriented lines or other various oriented objects from synthetic or real-life images. Finally, a computationally efficient implementation at the system level is proposed, based on a polyphase decomposition and block-filtering approach, which yields a 2D filter with a high degree of parallelism and low arithmetic complexity.
doi_str_mv 10.3390/electronics13071243
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3037505045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790017965</galeid><sourcerecordid>A790017965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-ac56f41aa72eb79d7be867d1497ae44a18867ab936e5c9f0a29365416ceae70f3</originalsourceid><addsrcrecordid>eNptUcFuwjAMraZNGmJ8wS6RdoYlTduQYweDISFNmuBcmdSFsDbpknDg7xcEhx1mH_xsvfcsy0nyzOiEc0lfsUUVnDVaecapYGnG75JBSoUcy1Sm93_wYzLy_khjSMannA6SUBpoz0EraMkcvd4bYhuyhJP3GgwpjfY2mvdakXROFqsvstBtQOcJmJpsDqgdWXV9ix2aAEFbQ7Zemz0JByRvrVXfN8FlVva9s6AOT8lDA63H0a0Ok-3ifTP7GK8_l6tZuR6rNGNhDCovmowBiBR3QtZih9NC1CyTAjDLgE1jCzvJC8yVbCikEeYZKxQCCtrwYfJy9Y1rf07oQ3W0JxcP9hWnXOQ0p1keWZMraw8tVto08WBQMWvstLIGGx3npZCUMiGLi4BfBcpZ7x02Ve90B-5cMVpdXlL98xL-C0ZxgjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037505045</pqid></control><display><type>article</type><title>Analytical Design of Gaussian Anisotropic 2D FIR Filters and Their Implementation Using the Block Filtering Approach</title><source>Publicly Available Content Database</source><creator>Matei, Radu ; Chiper, Doru Florin</creator><creatorcontrib>Matei, Radu ; Chiper, Doru Florin</creatorcontrib><description>This work proposes an analytical design procedure for a particular class of 2D filters, namely anisotropic Gaussian FIR filters. The design is achieved in the frequency domain and starts from a low-pass Gaussian 1D prototype with imposed specifications, whose frequency response is efficiently approximated by a factored trigonometric polynomial using the Chebyshev series. Then, using specific 1D to 2D frequency mappings applied to the prototype, the frequency response for a 2D anisotropic filter with a specified orientation angle is directly derived in two versions, namely with a straight or elliptical shape in the frequency plane. The resulting filters have an accurate shape with low distortion. Several design examples for specified parameters (angle and selectivity) are provided. Then, simulations of directional filtering on various test images are given, which show their capability of extracting oriented lines or other various oriented objects from synthetic or real-life images. Finally, a computationally efficient implementation at the system level is proposed, based on a polyphase decomposition and block-filtering approach, which yields a 2D filter with a high degree of parallelism and low arithmetic complexity.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13071243</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anisotropy ; Approximation ; Chebyshev approximation ; Decomposition ; Design analysis ; Design parameters ; Design techniques ; Electric filters ; FIR filters ; Frequency response ; Mathematical analysis ; Optimization algorithms ; Polynomials ; Prototypes ; Two dimensional analysis</subject><ispartof>Electronics (Basel), 2024-04, Vol.13 (7), p.1243</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-ac56f41aa72eb79d7be867d1497ae44a18867ab936e5c9f0a29365416ceae70f3</cites><orcidid>0000-0002-3322-4663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037505045/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037505045?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Matei, Radu</creatorcontrib><creatorcontrib>Chiper, Doru Florin</creatorcontrib><title>Analytical Design of Gaussian Anisotropic 2D FIR Filters and Their Implementation Using the Block Filtering Approach</title><title>Electronics (Basel)</title><description>This work proposes an analytical design procedure for a particular class of 2D filters, namely anisotropic Gaussian FIR filters. The design is achieved in the frequency domain and starts from a low-pass Gaussian 1D prototype with imposed specifications, whose frequency response is efficiently approximated by a factored trigonometric polynomial using the Chebyshev series. Then, using specific 1D to 2D frequency mappings applied to the prototype, the frequency response for a 2D anisotropic filter with a specified orientation angle is directly derived in two versions, namely with a straight or elliptical shape in the frequency plane. The resulting filters have an accurate shape with low distortion. Several design examples for specified parameters (angle and selectivity) are provided. Then, simulations of directional filtering on various test images are given, which show their capability of extracting oriented lines or other various oriented objects from synthetic or real-life images. Finally, a computationally efficient implementation at the system level is proposed, based on a polyphase decomposition and block-filtering approach, which yields a 2D filter with a high degree of parallelism and low arithmetic complexity.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Chebyshev approximation</subject><subject>Decomposition</subject><subject>Design analysis</subject><subject>Design parameters</subject><subject>Design techniques</subject><subject>Electric filters</subject><subject>FIR filters</subject><subject>Frequency response</subject><subject>Mathematical analysis</subject><subject>Optimization algorithms</subject><subject>Polynomials</subject><subject>Prototypes</subject><subject>Two dimensional analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUcFuwjAMraZNGmJ8wS6RdoYlTduQYweDISFNmuBcmdSFsDbpknDg7xcEhx1mH_xsvfcsy0nyzOiEc0lfsUUVnDVaecapYGnG75JBSoUcy1Sm93_wYzLy_khjSMannA6SUBpoz0EraMkcvd4bYhuyhJP3GgwpjfY2mvdakXROFqsvstBtQOcJmJpsDqgdWXV9ix2aAEFbQ7Zemz0JByRvrVXfN8FlVva9s6AOT8lDA63H0a0Ok-3ifTP7GK8_l6tZuR6rNGNhDCovmowBiBR3QtZih9NC1CyTAjDLgE1jCzvJC8yVbCikEeYZKxQCCtrwYfJy9Y1rf07oQ3W0JxcP9hWnXOQ0p1keWZMraw8tVto08WBQMWvstLIGGx3npZCUMiGLi4BfBcpZ7x02Ve90B-5cMVpdXlL98xL-C0ZxgjE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Matei, Radu</creator><creator>Chiper, Doru Florin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3322-4663</orcidid></search><sort><creationdate>20240401</creationdate><title>Analytical Design of Gaussian Anisotropic 2D FIR Filters and Their Implementation Using the Block Filtering Approach</title><author>Matei, Radu ; Chiper, Doru Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-ac56f41aa72eb79d7be867d1497ae44a18867ab936e5c9f0a29365416ceae70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Chebyshev approximation</topic><topic>Decomposition</topic><topic>Design analysis</topic><topic>Design parameters</topic><topic>Design techniques</topic><topic>Electric filters</topic><topic>FIR filters</topic><topic>Frequency response</topic><topic>Mathematical analysis</topic><topic>Optimization algorithms</topic><topic>Polynomials</topic><topic>Prototypes</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matei, Radu</creatorcontrib><creatorcontrib>Chiper, Doru Florin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matei, Radu</au><au>Chiper, Doru Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Design of Gaussian Anisotropic 2D FIR Filters and Their Implementation Using the Block Filtering Approach</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>13</volume><issue>7</issue><spage>1243</spage><pages>1243-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This work proposes an analytical design procedure for a particular class of 2D filters, namely anisotropic Gaussian FIR filters. The design is achieved in the frequency domain and starts from a low-pass Gaussian 1D prototype with imposed specifications, whose frequency response is efficiently approximated by a factored trigonometric polynomial using the Chebyshev series. Then, using specific 1D to 2D frequency mappings applied to the prototype, the frequency response for a 2D anisotropic filter with a specified orientation angle is directly derived in two versions, namely with a straight or elliptical shape in the frequency plane. The resulting filters have an accurate shape with low distortion. Several design examples for specified parameters (angle and selectivity) are provided. Then, simulations of directional filtering on various test images are given, which show their capability of extracting oriented lines or other various oriented objects from synthetic or real-life images. Finally, a computationally efficient implementation at the system level is proposed, based on a polyphase decomposition and block-filtering approach, which yields a 2D filter with a high degree of parallelism and low arithmetic complexity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13071243</doi><orcidid>https://orcid.org/0000-0002-3322-4663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-04, Vol.13 (7), p.1243
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3037505045
source Publicly Available Content Database
subjects Anisotropy
Approximation
Chebyshev approximation
Decomposition
Design analysis
Design parameters
Design techniques
Electric filters
FIR filters
Frequency response
Mathematical analysis
Optimization algorithms
Polynomials
Prototypes
Two dimensional analysis
title Analytical Design of Gaussian Anisotropic 2D FIR Filters and Their Implementation Using the Block Filtering Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Design%20of%20Gaussian%20Anisotropic%202D%20FIR%20Filters%20and%20Their%20Implementation%20Using%20the%20Block%20Filtering%20Approach&rft.jtitle=Electronics%20(Basel)&rft.au=Matei,%20Radu&rft.date=2024-04-01&rft.volume=13&rft.issue=7&rft.spage=1243&rft.pages=1243-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13071243&rft_dat=%3Cgale_proqu%3EA790017965%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-ac56f41aa72eb79d7be867d1497ae44a18867ab936e5c9f0a29365416ceae70f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037505045&rft_id=info:pmid/&rft_galeid=A790017965&rfr_iscdi=true