Loading…
Analyzing Water Leakages in Parallel Pipe Systems with Rapid Regulating Valve Maneuvers
Water utilities face the challenge of addressing physical leaks generated from the aging of water distribution systems and the need for more innovative practices to manage water infrastructure efficiently. Water leakages are typically modeled using extended period simulations based on Bernoulli’s eq...
Saved in:
Published in: | Water (Basel) 2024-04, Vol.16 (7), p.926 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water utilities face the challenge of addressing physical leaks generated from the aging of water distribution systems and the need for more innovative practices to manage water infrastructure efficiently. Water leakages are typically modeled using extended period simulations based on Bernoulli’s equation. However, this approach must be revised since traditional methods do not appropriately simulate variations induced by regulating valves. In this study, the authors developed a mathematical model based on the mass oscillation equation, which is well-suited for predicting water leakages while accounting for system inertia from regulating valves. This approach is versatile and can be applied to all parallel pipe systems. A comprehensive practical application involving two parallel pipes has been conducted. The aim is to provide engineers and designers with a tool to assess the total volume of water leaks caused by regulating valves in real-world water distribution networks. Furthermore, the study includes a comparative analysis with a single pipe configuration to illustrate how parallel systems lead to increased leaks in contrast to simpler pipe setups. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w16070926 |