Loading…
A Pesticide Spraying Mission Allocation and Path Planning With Multicopters
This article presents a mission allocation and path-planning solution for the pesticide spraying mission of dense trees in hilly terrains using cooperative multicopters. The problem is formulated as a single-depot single-end multiple traveling salesman problem (mTSP). Three different algorithms, nam...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2024-04, Vol.60 (2), p.2277-2291 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-a3de1970ae7658965c240d53d9667ba45e73fa19c76c496029bf86fa6356b3643 |
container_end_page | 2291 |
container_issue | 2 |
container_start_page | 2277 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Huang, Jing Du, Baihui Zhang, Youmin Quan, Quan Wang, Ban Mu, Lingxia |
description | This article presents a mission allocation and path-planning solution for the pesticide spraying mission of dense trees in hilly terrains using cooperative multicopters. The problem is formulated as a single-depot single-end multiple traveling salesman problem (mTSP). Three different algorithms, namely classical mTSP algorithm, Grouping-TSP combined algorithm, and Grouping-TSP decoupled algorithm, are developed to solve the proposed mTSP. Simulation results indicate that the classical mTSP algorithm provides an evenly distributed task allocation while the Grouping-TSP combined algorithm delivers the optimal solution. In addition, the Grouping-TSP decoupled algorithm minimizes computational complexity. Both Grouping-TSP algorithms integrate a subregions segmentation process to guarantee collision avoidance between the multicopters. |
doi_str_mv | 10.1109/TAES.2024.3355028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3037645855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400918</ieee_id><sourcerecordid>3037645855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a3de1970ae7658965c240d53d9667ba45e73fa19c76c496029bf86fa6356b3643</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsFZ_gOAi4Dr1Tua9DKVWscVCKy6HaTLRKTGJM8mi_94J7cLVffCdew8HoXsMM4xBPe3yxXaWQUZnhDAGmbxAE8yYSBUHcokmAFimKmP4Gt2EcIgjlZRM0FuebGzoXeFKm2w7b46u-UrWLgTXNkle121h-rE1TZlsTP-dbGrTNCP06eK0Huoobrve-nCLripTB3t3rlP08bzYzV_S1fvydZ6v0iKjvE8NKS1WAowVnEnFWVxDyUipOBd7Q5kVpDJYFYIXNNrP1L6SvDKcML4nnJIpejzd7Xz7O0T3-tAOvokvNQEiOGWSsUjhE1X4NgRvK91592P8UWPQY2Z6zEyPmelzZlHzcNI4a-0_ngIoLMkfZu9m0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037645855</pqid></control><display><type>article</type><title>A Pesticide Spraying Mission Allocation and Path Planning With Multicopters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Jing ; Du, Baihui ; Zhang, Youmin ; Quan, Quan ; Wang, Ban ; Mu, Lingxia</creator><creatorcontrib>Huang, Jing ; Du, Baihui ; Zhang, Youmin ; Quan, Quan ; Wang, Ban ; Mu, Lingxia</creatorcontrib><description>This article presents a mission allocation and path-planning solution for the pesticide spraying mission of dense trees in hilly terrains using cooperative multicopters. The problem is formulated as a single-depot single-end multiple traveling salesman problem (mTSP). Three different algorithms, namely classical mTSP algorithm, Grouping-TSP combined algorithm, and Grouping-TSP decoupled algorithm, are developed to solve the proposed mTSP. Simulation results indicate that the classical mTSP algorithm provides an evenly distributed task allocation while the Grouping-TSP combined algorithm delivers the optimal solution. In addition, the Grouping-TSP decoupled algorithm minimizes computational complexity. Both Grouping-TSP algorithms integrate a subregions segmentation process to guarantee collision avoidance between the multicopters.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3355028</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Collision avoidance ; Genetic algorithms ; Mission assignment ; multicopters ; multiple traveling salesman problem (mTSP) ; Optimization ; Path planning ; Pesticides ; point cloud ; precision spraying ; Resource management ; Rotary wing aircraft ; Spraying ; Task analysis ; Traveling salesman problem</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-04, Vol.60 (2), p.2277-2291</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-a3de1970ae7658965c240d53d9667ba45e73fa19c76c496029bf86fa6356b3643</cites><orcidid>0000-0002-5471-8339 ; 0000-0001-8002-1263 ; 0000-0001-8216-8998 ; 0000-0002-9731-5943 ; 0000-0002-6466-5277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Du, Baihui</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Quan, Quan</creatorcontrib><creatorcontrib>Wang, Ban</creatorcontrib><creatorcontrib>Mu, Lingxia</creatorcontrib><title>A Pesticide Spraying Mission Allocation and Path Planning With Multicopters</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This article presents a mission allocation and path-planning solution for the pesticide spraying mission of dense trees in hilly terrains using cooperative multicopters. The problem is formulated as a single-depot single-end multiple traveling salesman problem (mTSP). Three different algorithms, namely classical mTSP algorithm, Grouping-TSP combined algorithm, and Grouping-TSP decoupled algorithm, are developed to solve the proposed mTSP. Simulation results indicate that the classical mTSP algorithm provides an evenly distributed task allocation while the Grouping-TSP combined algorithm delivers the optimal solution. In addition, the Grouping-TSP decoupled algorithm minimizes computational complexity. Both Grouping-TSP algorithms integrate a subregions segmentation process to guarantee collision avoidance between the multicopters.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Genetic algorithms</subject><subject>Mission assignment</subject><subject>multicopters</subject><subject>multiple traveling salesman problem (mTSP)</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Pesticides</subject><subject>point cloud</subject><subject>precision spraying</subject><subject>Resource management</subject><subject>Rotary wing aircraft</subject><subject>Spraying</subject><subject>Task analysis</subject><subject>Traveling salesman problem</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRsFZ_gOAi4Dr1Tua9DKVWscVCKy6HaTLRKTGJM8mi_94J7cLVffCdew8HoXsMM4xBPe3yxXaWQUZnhDAGmbxAE8yYSBUHcokmAFimKmP4Gt2EcIgjlZRM0FuebGzoXeFKm2w7b46u-UrWLgTXNkle121h-rE1TZlsTP-dbGrTNCP06eK0Huoobrve-nCLripTB3t3rlP08bzYzV_S1fvydZ6v0iKjvE8NKS1WAowVnEnFWVxDyUipOBd7Q5kVpDJYFYIXNNrP1L6SvDKcML4nnJIpejzd7Xz7O0T3-tAOvokvNQEiOGWSsUjhE1X4NgRvK91592P8UWPQY2Z6zEyPmelzZlHzcNI4a-0_ngIoLMkfZu9m0g</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Huang, Jing</creator><creator>Du, Baihui</creator><creator>Zhang, Youmin</creator><creator>Quan, Quan</creator><creator>Wang, Ban</creator><creator>Mu, Lingxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5471-8339</orcidid><orcidid>https://orcid.org/0000-0001-8002-1263</orcidid><orcidid>https://orcid.org/0000-0001-8216-8998</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0002-6466-5277</orcidid></search><sort><creationdate>20240401</creationdate><title>A Pesticide Spraying Mission Allocation and Path Planning With Multicopters</title><author>Huang, Jing ; Du, Baihui ; Zhang, Youmin ; Quan, Quan ; Wang, Ban ; Mu, Lingxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a3de1970ae7658965c240d53d9667ba45e73fa19c76c496029bf86fa6356b3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Genetic algorithms</topic><topic>Mission assignment</topic><topic>multicopters</topic><topic>multiple traveling salesman problem (mTSP)</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Pesticides</topic><topic>point cloud</topic><topic>precision spraying</topic><topic>Resource management</topic><topic>Rotary wing aircraft</topic><topic>Spraying</topic><topic>Task analysis</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Du, Baihui</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Quan, Quan</creatorcontrib><creatorcontrib>Wang, Ban</creatorcontrib><creatorcontrib>Mu, Lingxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jing</au><au>Du, Baihui</au><au>Zhang, Youmin</au><au>Quan, Quan</au><au>Wang, Ban</au><au>Mu, Lingxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pesticide Spraying Mission Allocation and Path Planning With Multicopters</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>60</volume><issue>2</issue><spage>2277</spage><epage>2291</epage><pages>2277-2291</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This article presents a mission allocation and path-planning solution for the pesticide spraying mission of dense trees in hilly terrains using cooperative multicopters. The problem is formulated as a single-depot single-end multiple traveling salesman problem (mTSP). Three different algorithms, namely classical mTSP algorithm, Grouping-TSP combined algorithm, and Grouping-TSP decoupled algorithm, are developed to solve the proposed mTSP. Simulation results indicate that the classical mTSP algorithm provides an evenly distributed task allocation while the Grouping-TSP combined algorithm delivers the optimal solution. In addition, the Grouping-TSP decoupled algorithm minimizes computational complexity. Both Grouping-TSP algorithms integrate a subregions segmentation process to guarantee collision avoidance between the multicopters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2024.3355028</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5471-8339</orcidid><orcidid>https://orcid.org/0000-0001-8002-1263</orcidid><orcidid>https://orcid.org/0000-0001-8216-8998</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0002-6466-5277</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-04, Vol.60 (2), p.2277-2291 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_3037645855 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Collision avoidance Genetic algorithms Mission assignment multicopters multiple traveling salesman problem (mTSP) Optimization Path planning Pesticides point cloud precision spraying Resource management Rotary wing aircraft Spraying Task analysis Traveling salesman problem |
title | A Pesticide Spraying Mission Allocation and Path Planning With Multicopters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T12%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pesticide%20Spraying%20Mission%20Allocation%20and%20Path%20Planning%20With%20Multicopters&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Huang,%20Jing&rft.date=2024-04-01&rft.volume=60&rft.issue=2&rft.spage=2277&rft.epage=2291&rft.pages=2277-2291&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3355028&rft_dat=%3Cproquest_cross%3E3037645855%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-a3de1970ae7658965c240d53d9667ba45e73fa19c76c496029bf86fa6356b3643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037645855&rft_id=info:pmid/&rft_ieee_id=10400918&rfr_iscdi=true |