Loading…
Comparing Compressed and Full-modeling Analyses with FOLPS: Implications for DESI 2024 and beyond
The Dark Energy Spectroscopic Instrument (DESI) will provide unprecedented information about the large-scale structure of our Universe. In this work, we study the robustness of the theoretical modelling of the power spectrum of FOLPS, a novel effective field theory-based package for evaluating the r...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Dark Energy Spectroscopic Instrument (DESI) will provide unprecedented information about the large-scale structure of our Universe. In this work, we study the robustness of the theoretical modelling of the power spectrum of FOLPS, a novel effective field theory-based package for evaluating the redshift space power spectrum in the presence of massive neutrinos. We perform this validation by fitting the AbacusSummit high-accuracy \(N\)-body simulations for Luminous Red Galaxies, Emission Line Galaxies and Quasar tracers, calibrated to describe DESI observations. We quantify the potential systematic error budget of FOLPS, finding that the modelling errors are fully sub-dominant for the DESI statistical precision within the studied range of scales. Additionally, we study two complementary approaches to fit and analyse the power spectrum data, one based on direct Full-Modelling fits and the other on the ShapeFit compression variables, both resulting in very good agreement in precision and accuracy. In each of these approaches, we study a set of potential systematic errors induced by several assumptions, such as the choice of template cosmology, the effect of prior choice in the nuisance parameters of the model, or the range of scales used in the analysis. Furthermore, we show how opening up the parameter space beyond the vanilla \(\Lambda\)CDM model affects the DESI observables. These studies include the addition of massive neutrinos, spatial curvature, and dark energy equation of state. We also examine how relaxing the usual Cosmic Microwave Background and Big Bang Nucleosynthesis priors on the primordial spectral index and the baryonic matter abundance, respectively, impacts the inference on the rest of the parameters of interest. This paper pathways towards performing a robust and reliable analysis of the shape of the power spectrum of DESI galaxy and quasar clustering using FOLPS. |
---|---|
ISSN: | 2331-8422 |