Loading…

Generative Resident Separation and Multi-label Classification for Multi-person Activity Recognition

This paper presents two models to address the problem of multi-person activity recognition using ambient sensors in a home. The first model, Seq2Res, uses a sequence generation approach to separate sensor events from different residents. The second model, BiGRU+Q2L, uses a Query2Label multi-label cl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-04
Main Authors: Chen, Xi, Cumin, Julien, Fano Ramparany, Vaufreydaz, Dominique
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Xi
Cumin, Julien
Fano Ramparany
Vaufreydaz, Dominique
description This paper presents two models to address the problem of multi-person activity recognition using ambient sensors in a home. The first model, Seq2Res, uses a sequence generation approach to separate sensor events from different residents. The second model, BiGRU+Q2L, uses a Query2Label multi-label classifier to predict multiple activities simultaneously. Performances of these models are compared to a state-of-the-art model in different experimental scenarios, using a state-of-the-art dataset of two residents in a home instrumented with ambient sensors. These results lead to a discussion on the advantages and drawbacks of resident separation and multi-label classification for multi-person activity recognition.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3037662298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037662298</sourcerecordid><originalsourceid>FETCH-proquest_journals_30376622983</originalsourceid><addsrcrecordid>eNqNjMsKwjAUBYMgWLT_EHBdqIl9uJTiY-NG3ZeY3kpKSGpuKvj3ptgPcHVgZjgzEjHON0m5ZWxBYsQuTVOWFyzLeETkCQw44dUb6BVQNWA8vUEvRmYNFaahl0F7lWjxAE0rLRBVq-RPt9ZNugeHAexluFL-E86kfRo1Visyb4VGiKddkvXxcK_OSe_sawD0dWcHZ4KqecqLPGdsV_L_qi8qLEa9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037662298</pqid></control><display><type>article</type><title>Generative Resident Separation and Multi-label Classification for Multi-person Activity Recognition</title><source>Publicly Available Content (ProQuest)</source><creator>Chen, Xi ; Cumin, Julien ; Fano Ramparany ; Vaufreydaz, Dominique</creator><creatorcontrib>Chen, Xi ; Cumin, Julien ; Fano Ramparany ; Vaufreydaz, Dominique</creatorcontrib><description>This paper presents two models to address the problem of multi-person activity recognition using ambient sensors in a home. The first model, Seq2Res, uses a sequence generation approach to separate sensor events from different residents. The second model, BiGRU+Q2L, uses a Query2Label multi-label classifier to predict multiple activities simultaneously. Performances of these models are compared to a state-of-the-art model in different experimental scenarios, using a state-of-the-art dataset of two residents in a home instrumented with ambient sensors. These results lead to a discussion on the advantages and drawbacks of resident separation and multi-label classification for multi-person activity recognition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Human activity recognition ; Labels ; Sensors ; Separation</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3037662298?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Cumin, Julien</creatorcontrib><creatorcontrib>Fano Ramparany</creatorcontrib><creatorcontrib>Vaufreydaz, Dominique</creatorcontrib><title>Generative Resident Separation and Multi-label Classification for Multi-person Activity Recognition</title><title>arXiv.org</title><description>This paper presents two models to address the problem of multi-person activity recognition using ambient sensors in a home. The first model, Seq2Res, uses a sequence generation approach to separate sensor events from different residents. The second model, BiGRU+Q2L, uses a Query2Label multi-label classifier to predict multiple activities simultaneously. Performances of these models are compared to a state-of-the-art model in different experimental scenarios, using a state-of-the-art dataset of two residents in a home instrumented with ambient sensors. These results lead to a discussion on the advantages and drawbacks of resident separation and multi-label classification for multi-person activity recognition.</description><subject>Classification</subject><subject>Human activity recognition</subject><subject>Labels</subject><subject>Sensors</subject><subject>Separation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAUBYMgWLT_EHBdqIl9uJTiY-NG3ZeY3kpKSGpuKvj3ptgPcHVgZjgzEjHON0m5ZWxBYsQuTVOWFyzLeETkCQw44dUb6BVQNWA8vUEvRmYNFaahl0F7lWjxAE0rLRBVq-RPt9ZNugeHAexluFL-E86kfRo1Visyb4VGiKddkvXxcK_OSe_sawD0dWcHZ4KqecqLPGdsV_L_qi8qLEa9</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Chen, Xi</creator><creator>Cumin, Julien</creator><creator>Fano Ramparany</creator><creator>Vaufreydaz, Dominique</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240410</creationdate><title>Generative Resident Separation and Multi-label Classification for Multi-person Activity Recognition</title><author>Chen, Xi ; Cumin, Julien ; Fano Ramparany ; Vaufreydaz, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30376622983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Human activity recognition</topic><topic>Labels</topic><topic>Sensors</topic><topic>Separation</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Cumin, Julien</creatorcontrib><creatorcontrib>Fano Ramparany</creatorcontrib><creatorcontrib>Vaufreydaz, Dominique</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Cumin, Julien</au><au>Fano Ramparany</au><au>Vaufreydaz, Dominique</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generative Resident Separation and Multi-label Classification for Multi-person Activity Recognition</atitle><jtitle>arXiv.org</jtitle><date>2024-04-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper presents two models to address the problem of multi-person activity recognition using ambient sensors in a home. The first model, Seq2Res, uses a sequence generation approach to separate sensor events from different residents. The second model, BiGRU+Q2L, uses a Query2Label multi-label classifier to predict multiple activities simultaneously. Performances of these models are compared to a state-of-the-art model in different experimental scenarios, using a state-of-the-art dataset of two residents in a home instrumented with ambient sensors. These results lead to a discussion on the advantages and drawbacks of resident separation and multi-label classification for multi-person activity recognition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3037662298
source Publicly Available Content (ProQuest)
subjects Classification
Human activity recognition
Labels
Sensors
Separation
title Generative Resident Separation and Multi-label Classification for Multi-person Activity Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generative%20Resident%20Separation%20and%20Multi-label%20Classification%20for%20Multi-person%20Activity%20Recognition&rft.jtitle=arXiv.org&rft.au=Chen,%20Xi&rft.date=2024-04-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3037662298%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30376622983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037662298&rft_id=info:pmid/&rfr_iscdi=true