Loading…

Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type

In this article, a classical predator–prey system with linear cross-diffusion and Holling-II type functional response and subject to homogeneous Neuamnn boundary condition is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the constant coexistence equilib...

Full description

Saved in:
Bibliographic Details
Published in:Qualitative theory of dynamical systems 2024-09, Vol.23 (4), Article 168
Main Authors: Yan, Xiang-Ping, Yang, Tong-Jie, Zhang, Cun-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83
cites cdi_FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83
container_end_page
container_issue 4
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 23
creator Yan, Xiang-Ping
Yang, Tong-Jie
Zhang, Cun-Hua
description In this article, a classical predator–prey system with linear cross-diffusion and Holling-II type functional response and subject to homogeneous Neuamnn boundary condition is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the constant coexistence equilibrium are established with the help of the linearized analysis. When the bifurcation parameters are restricted to the Turing instability region and near the Turing bifurcation curve, the associated amplitude equations of the original system near the constant coexistence equilibrium are obtained by means of multiple-scale time perturbation analysis. According to the obtained amplitude equations, the stability and classification of spatiotemporal patterns of the original system near the constant coexistence equilibrium are determined. It is shown that the cross-diffusion in the classical predator–prey system plays an important role in formation of spatiotemporal patterns. Also, the theoretical results are verified numerically.
doi_str_mv 10.1007/s12346-024-01031-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3039886244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039886244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBv8l78lKpRGqgSCsrYcZwKp0jjYiWh23IEbchJcisSO1bzFe29mPoTOGb1klCZXnnEhY0K5JJRRwcj2AE1YHHMioowfBh0lEYlkTI_RifdrSmOeCD5BbjW4un3BD7rvwbUe5205GChxMeKZs96Tm7qqBl_bFtct1vjBQal7674-PoMc8dPoe9jg97p_xfOhNX1w6gY_gu9s6wHbCi9s04QdJM_xauzgFB1VuvFw9jun6Hl-u5otyPL-Lp9dL4kRLOsJqyoogYM2SSGLREcmK4tSxKVIjYZMFCkVIAXnOuKp0DHnPDWyMKbikSwgFVN0se_tnH0bwPdqbQcXjvNKUJGlacylDC6-d5ndtw4q1bl6o92oGFU7tmrPVgW26oet2oaQ2Id8t6MH7q_6n9Q3av1_hA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039886244</pqid></control><display><type>article</type><title>Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type</title><source>Springer Nature</source><creator>Yan, Xiang-Ping ; Yang, Tong-Jie ; Zhang, Cun-Hua</creator><creatorcontrib>Yan, Xiang-Ping ; Yang, Tong-Jie ; Zhang, Cun-Hua</creatorcontrib><description>In this article, a classical predator–prey system with linear cross-diffusion and Holling-II type functional response and subject to homogeneous Neuamnn boundary condition is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the constant coexistence equilibrium are established with the help of the linearized analysis. When the bifurcation parameters are restricted to the Turing instability region and near the Turing bifurcation curve, the associated amplitude equations of the original system near the constant coexistence equilibrium are obtained by means of multiple-scale time perturbation analysis. According to the obtained amplitude equations, the stability and classification of spatiotemporal patterns of the original system near the constant coexistence equilibrium are determined. It is shown that the cross-diffusion in the classical predator–prey system plays an important role in formation of spatiotemporal patterns. Also, the theoretical results are verified numerically.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-024-01031-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amplitudes ; Boundary conditions ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Hopf bifurcation ; Mathematics ; Mathematics and Statistics ; Perturbation methods ; Predators ; Stability analysis</subject><ispartof>Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 168</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83</citedby><cites>FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Xiang-Ping</creatorcontrib><creatorcontrib>Yang, Tong-Jie</creatorcontrib><creatorcontrib>Zhang, Cun-Hua</creatorcontrib><title>Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this article, a classical predator–prey system with linear cross-diffusion and Holling-II type functional response and subject to homogeneous Neuamnn boundary condition is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the constant coexistence equilibrium are established with the help of the linearized analysis. When the bifurcation parameters are restricted to the Turing instability region and near the Turing bifurcation curve, the associated amplitude equations of the original system near the constant coexistence equilibrium are obtained by means of multiple-scale time perturbation analysis. According to the obtained amplitude equations, the stability and classification of spatiotemporal patterns of the original system near the constant coexistence equilibrium are determined. It is shown that the cross-diffusion in the classical predator–prey system plays an important role in formation of spatiotemporal patterns. Also, the theoretical results are verified numerically.</description><subject>Amplitudes</subject><subject>Boundary conditions</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Hopf bifurcation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Perturbation methods</subject><subject>Predators</subject><subject>Stability analysis</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBv8l78lKpRGqgSCsrYcZwKp0jjYiWh23IEbchJcisSO1bzFe29mPoTOGb1klCZXnnEhY0K5JJRRwcj2AE1YHHMioowfBh0lEYlkTI_RifdrSmOeCD5BbjW4un3BD7rvwbUe5205GChxMeKZs96Tm7qqBl_bFtct1vjBQal7674-PoMc8dPoe9jg97p_xfOhNX1w6gY_gu9s6wHbCi9s04QdJM_xauzgFB1VuvFw9jun6Hl-u5otyPL-Lp9dL4kRLOsJqyoogYM2SSGLREcmK4tSxKVIjYZMFCkVIAXnOuKp0DHnPDWyMKbikSwgFVN0se_tnH0bwPdqbQcXjvNKUJGlacylDC6-d5ndtw4q1bl6o92oGFU7tmrPVgW26oet2oaQ2Id8t6MH7q_6n9Q3av1_hA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yan, Xiang-Ping</creator><creator>Yang, Tong-Jie</creator><creator>Zhang, Cun-Hua</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type</title><author>Yan, Xiang-Ping ; Yang, Tong-Jie ; Zhang, Cun-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplitudes</topic><topic>Boundary conditions</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Hopf bifurcation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Perturbation methods</topic><topic>Predators</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiang-Ping</creatorcontrib><creatorcontrib>Yang, Tong-Jie</creatorcontrib><creatorcontrib>Zhang, Cun-Hua</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiang-Ping</au><au>Yang, Tong-Jie</au><au>Zhang, Cun-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>23</volume><issue>4</issue><artnum>168</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this article, a classical predator–prey system with linear cross-diffusion and Holling-II type functional response and subject to homogeneous Neuamnn boundary condition is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifurcation curve of the constant coexistence equilibrium are established with the help of the linearized analysis. When the bifurcation parameters are restricted to the Turing instability region and near the Turing bifurcation curve, the associated amplitude equations of the original system near the constant coexistence equilibrium are obtained by means of multiple-scale time perturbation analysis. According to the obtained amplitude equations, the stability and classification of spatiotemporal patterns of the original system near the constant coexistence equilibrium are determined. It is shown that the cross-diffusion in the classical predator–prey system plays an important role in formation of spatiotemporal patterns. Also, the theoretical results are verified numerically.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-024-01031-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2024-09, Vol.23 (4), Article 168
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_3039886244
source Springer Nature
subjects Amplitudes
Boundary conditions
Difference and Functional Equations
Dynamical Systems and Ergodic Theory
Hopf bifurcation
Mathematics
Mathematics and Statistics
Perturbation methods
Predators
Stability analysis
title Turing Patterns Induced by Cross-Diffusion in a Predator–Prey System with Functional Response of Holling-II Type
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turing%20Patterns%20Induced%20by%20Cross-Diffusion%20in%20a%20Predator%E2%80%93Prey%20System%20with%20Functional%20Response%20of%20Holling-II%20Type&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Yan,%20Xiang-Ping&rft.date=2024-09-01&rft.volume=23&rft.issue=4&rft.artnum=168&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-024-01031-x&rft_dat=%3Cproquest_cross%3E3039886244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-1ffede2eac7b4b7a5c9dbd36d38cae93b803e4322a5283a62228c4bccf254be83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3039886244&rft_id=info:pmid/&rfr_iscdi=true