Loading…
Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification
Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tinauer, Christian Damulina, Anna Sackl, Maximilian Soellradl, Martin Achtibat, Reduan Dreyer, Maximilian Pahde, Frederik Lapuschkin, Sebastian Schmidt, Reinhold Ropele, Stefan Samek, Wojciech Langkammer, Christian |
description | Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3040140050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040140050</sourcerecordid><originalsourceid>FETCH-proquest_journals_30401400503</originalsourceid><addsrcrecordid>eNqNjMGKwjAURcOAMKL9hwezLsSkdcTt4KALN-JeXtNXjaRJJq8d9O-N4Ae4upx7LvdDTJXWi3JVKfUpCuarlFItv1Vd66m4b27RofXYOAITvKE4QI8xWn9mCB3sD7s1HOif0OUKhgtBT-aC3nLPMPqWkrs_TUsUwREmn6lskKmFJuVraC1TRjAOmW1nDQ42-LmYdOiYilfOxNfv5vizLWMKfyPxcLqGMfmsTlpWclFJWUv93uoB-htOfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040140050</pqid></control><display><type>article</type><title>Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification</title><source>Publicly Available Content (ProQuest)</source><creator>Tinauer, Christian ; Damulina, Anna ; Sackl, Maximilian ; Soellradl, Martin ; Achtibat, Reduan ; Dreyer, Maximilian ; Pahde, Frederik ; Lapuschkin, Sebastian ; Schmidt, Reinhold ; Ropele, Stefan ; Samek, Wojciech ; Langkammer, Christian</creator><creatorcontrib>Tinauer, Christian ; Damulina, Anna ; Sackl, Maximilian ; Soellradl, Martin ; Achtibat, Reduan ; Dreyer, Maximilian ; Pahde, Frederik ; Lapuschkin, Sebastian ; Schmidt, Reinhold ; Ropele, Stefan ; Samek, Wojciech ; Langkammer, Christian</creatorcontrib><description>Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Brain ; Classification ; Ganglia ; Machine learning</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3040140050?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Tinauer, Christian</creatorcontrib><creatorcontrib>Damulina, Anna</creatorcontrib><creatorcontrib>Sackl, Maximilian</creatorcontrib><creatorcontrib>Soellradl, Martin</creatorcontrib><creatorcontrib>Achtibat, Reduan</creatorcontrib><creatorcontrib>Dreyer, Maximilian</creatorcontrib><creatorcontrib>Pahde, Frederik</creatorcontrib><creatorcontrib>Lapuschkin, Sebastian</creatorcontrib><creatorcontrib>Schmidt, Reinhold</creatorcontrib><creatorcontrib>Ropele, Stefan</creatorcontrib><creatorcontrib>Samek, Wojciech</creatorcontrib><creatorcontrib>Langkammer, Christian</creatorcontrib><title>Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification</title><title>arXiv.org</title><description>Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Classification</subject><subject>Ganglia</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMGKwjAURcOAMKL9hwezLsSkdcTt4KALN-JeXtNXjaRJJq8d9O-N4Ae4upx7LvdDTJXWi3JVKfUpCuarlFItv1Vd66m4b27RofXYOAITvKE4QI8xWn9mCB3sD7s1HOif0OUKhgtBT-aC3nLPMPqWkrs_TUsUwREmn6lskKmFJuVraC1TRjAOmW1nDQ42-LmYdOiYilfOxNfv5vizLWMKfyPxcLqGMfmsTlpWclFJWUv93uoB-htOfg</recordid><startdate>20240416</startdate><enddate>20240416</enddate><creator>Tinauer, Christian</creator><creator>Damulina, Anna</creator><creator>Sackl, Maximilian</creator><creator>Soellradl, Martin</creator><creator>Achtibat, Reduan</creator><creator>Dreyer, Maximilian</creator><creator>Pahde, Frederik</creator><creator>Lapuschkin, Sebastian</creator><creator>Schmidt, Reinhold</creator><creator>Ropele, Stefan</creator><creator>Samek, Wojciech</creator><creator>Langkammer, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240416</creationdate><title>Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification</title><author>Tinauer, Christian ; Damulina, Anna ; Sackl, Maximilian ; Soellradl, Martin ; Achtibat, Reduan ; Dreyer, Maximilian ; Pahde, Frederik ; Lapuschkin, Sebastian ; Schmidt, Reinhold ; Ropele, Stefan ; Samek, Wojciech ; Langkammer, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30401400503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Classification</topic><topic>Ganglia</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Tinauer, Christian</creatorcontrib><creatorcontrib>Damulina, Anna</creatorcontrib><creatorcontrib>Sackl, Maximilian</creatorcontrib><creatorcontrib>Soellradl, Martin</creatorcontrib><creatorcontrib>Achtibat, Reduan</creatorcontrib><creatorcontrib>Dreyer, Maximilian</creatorcontrib><creatorcontrib>Pahde, Frederik</creatorcontrib><creatorcontrib>Lapuschkin, Sebastian</creatorcontrib><creatorcontrib>Schmidt, Reinhold</creatorcontrib><creatorcontrib>Ropele, Stefan</creatorcontrib><creatorcontrib>Samek, Wojciech</creatorcontrib><creatorcontrib>Langkammer, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tinauer, Christian</au><au>Damulina, Anna</au><au>Sackl, Maximilian</au><au>Soellradl, Martin</au><au>Achtibat, Reduan</au><au>Dreyer, Maximilian</au><au>Pahde, Frederik</au><au>Lapuschkin, Sebastian</au><au>Schmidt, Reinhold</au><au>Ropele, Stefan</au><au>Samek, Wojciech</au><au>Langkammer, Christian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification</atitle><jtitle>arXiv.org</jtitle><date>2024-04-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3040140050 |
source | Publicly Available Content (ProQuest) |
subjects | Alzheimer's disease Artificial neural networks Brain Classification Ganglia Machine learning |
title | Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Explainable%20concept%20mappings%20of%20MRI:%20Revealing%20the%20mechanisms%20underlying%20deep%20learning-based%20brain%20disease%20classification&rft.jtitle=arXiv.org&rft.au=Tinauer,%20Christian&rft.date=2024-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3040140050%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30401400503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3040140050&rft_id=info:pmid/&rfr_iscdi=true |