Loading…
Higher-dimensional grid-imprimitive block-transitive designs
It was shown in 1989 by Delandtsheer and Doyen that, for a \(2\)-design with \(v\) points and block size \(k\), a block-transitive group of automorphisms can be point-imprimitive (that is, leave invariant a nontrivial partition of the point set) only if \(v\) is small enough relative to \(k\). Recen...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Seyed Hassan Alavi Amarra, Carmen Daneshkhah, Ashraf Devillers, Alice Praeger, Cheryl E |
description | It was shown in 1989 by Delandtsheer and Doyen that, for a \(2\)-design with \(v\) points and block size \(k\), a block-transitive group of automorphisms can be point-imprimitive (that is, leave invariant a nontrivial partition of the point set) only if \(v\) is small enough relative to \(k\). Recently, exploiting a construction of block-transitive point-imprimitive \(2\)-designs given by Cameron and the last author, four of the authors studied \(2\)-designs admitting a block-transitive group that preserves a two-dimensional grid structure on the point set. Here we consider the case where there a block-transitive group preserves a multidimensional grid structure on points. We provide necessary and sufficient conditions for such \(2\)-designs to exist in terms of the parameters of the grid, and certain `array parameters' which describe a subset of points (which will be a block of the design). Using this criterion, we construct explicit examples of \(2\)-designs for grids of dimensions three and four, and pose several open questions. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3040954023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040954023</sourcerecordid><originalsourceid>FETCH-proquest_journals_30409540233</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8chMz0gt0k3JzE3NK87Mz0vMUUgvykzRzcwtKMrMzSzJLEtVSMrJT87WLSlKBKoAC6SkFmem5xXzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80iKgkcXxxgYmBpamJgZApxCnCgClUThk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040954023</pqid></control><display><type>article</type><title>Higher-dimensional grid-imprimitive block-transitive designs</title><source>Publicly Available Content Database</source><creator>Seyed Hassan Alavi ; Amarra, Carmen ; Daneshkhah, Ashraf ; Devillers, Alice ; Praeger, Cheryl E</creator><creatorcontrib>Seyed Hassan Alavi ; Amarra, Carmen ; Daneshkhah, Ashraf ; Devillers, Alice ; Praeger, Cheryl E</creatorcontrib><description>It was shown in 1989 by Delandtsheer and Doyen that, for a \(2\)-design with \(v\) points and block size \(k\), a block-transitive group of automorphisms can be point-imprimitive (that is, leave invariant a nontrivial partition of the point set) only if \(v\) is small enough relative to \(k\). Recently, exploiting a construction of block-transitive point-imprimitive \(2\)-designs given by Cameron and the last author, four of the authors studied \(2\)-designs admitting a block-transitive group that preserves a two-dimensional grid structure on the point set. Here we consider the case where there a block-transitive group preserves a multidimensional grid structure on points. We provide necessary and sufficient conditions for such \(2\)-designs to exist in terms of the parameters of the grid, and certain `array parameters' which describe a subset of points (which will be a block of the design). Using this criterion, we construct explicit examples of \(2\)-designs for grids of dimensions three and four, and pose several open questions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Parameters</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3040954023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Seyed Hassan Alavi</creatorcontrib><creatorcontrib>Amarra, Carmen</creatorcontrib><creatorcontrib>Daneshkhah, Ashraf</creatorcontrib><creatorcontrib>Devillers, Alice</creatorcontrib><creatorcontrib>Praeger, Cheryl E</creatorcontrib><title>Higher-dimensional grid-imprimitive block-transitive designs</title><title>arXiv.org</title><description>It was shown in 1989 by Delandtsheer and Doyen that, for a \(2\)-design with \(v\) points and block size \(k\), a block-transitive group of automorphisms can be point-imprimitive (that is, leave invariant a nontrivial partition of the point set) only if \(v\) is small enough relative to \(k\). Recently, exploiting a construction of block-transitive point-imprimitive \(2\)-designs given by Cameron and the last author, four of the authors studied \(2\)-designs admitting a block-transitive group that preserves a two-dimensional grid structure on the point set. Here we consider the case where there a block-transitive group preserves a multidimensional grid structure on points. We provide necessary and sufficient conditions for such \(2\)-designs to exist in terms of the parameters of the grid, and certain `array parameters' which describe a subset of points (which will be a block of the design). Using this criterion, we construct explicit examples of \(2\)-designs for grids of dimensions three and four, and pose several open questions.</description><subject>Automorphisms</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8chMz0gt0k3JzE3NK87Mz0vMUUgvykzRzcwtKMrMzSzJLEtVSMrJT87WLSlKBKoAC6SkFmem5xXzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80iKgkcXxxgYmBpamJgZApxCnCgClUThk</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Seyed Hassan Alavi</creator><creator>Amarra, Carmen</creator><creator>Daneshkhah, Ashraf</creator><creator>Devillers, Alice</creator><creator>Praeger, Cheryl E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240417</creationdate><title>Higher-dimensional grid-imprimitive block-transitive designs</title><author>Seyed Hassan Alavi ; Amarra, Carmen ; Daneshkhah, Ashraf ; Devillers, Alice ; Praeger, Cheryl E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30409540233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automorphisms</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Seyed Hassan Alavi</creatorcontrib><creatorcontrib>Amarra, Carmen</creatorcontrib><creatorcontrib>Daneshkhah, Ashraf</creatorcontrib><creatorcontrib>Devillers, Alice</creatorcontrib><creatorcontrib>Praeger, Cheryl E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyed Hassan Alavi</au><au>Amarra, Carmen</au><au>Daneshkhah, Ashraf</au><au>Devillers, Alice</au><au>Praeger, Cheryl E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Higher-dimensional grid-imprimitive block-transitive designs</atitle><jtitle>arXiv.org</jtitle><date>2024-04-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>It was shown in 1989 by Delandtsheer and Doyen that, for a \(2\)-design with \(v\) points and block size \(k\), a block-transitive group of automorphisms can be point-imprimitive (that is, leave invariant a nontrivial partition of the point set) only if \(v\) is small enough relative to \(k\). Recently, exploiting a construction of block-transitive point-imprimitive \(2\)-designs given by Cameron and the last author, four of the authors studied \(2\)-designs admitting a block-transitive group that preserves a two-dimensional grid structure on the point set. Here we consider the case where there a block-transitive group preserves a multidimensional grid structure on points. We provide necessary and sufficient conditions for such \(2\)-designs to exist in terms of the parameters of the grid, and certain `array parameters' which describe a subset of points (which will be a block of the design). Using this criterion, we construct explicit examples of \(2\)-designs for grids of dimensions three and four, and pose several open questions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3040954023 |
source | Publicly Available Content Database |
subjects | Automorphisms Parameters |
title | Higher-dimensional grid-imprimitive block-transitive designs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Higher-dimensional%20grid-imprimitive%20block-transitive%20designs&rft.jtitle=arXiv.org&rft.au=Seyed%20Hassan%20Alavi&rft.date=2024-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3040954023%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30409540233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3040954023&rft_id=info:pmid/&rfr_iscdi=true |