Loading…
Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain
Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on ext...
Saved in:
Published in: | IEEE robotics and automation letters 2024-06, Vol.9 (6), p.5078-5085 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3 |
container_end_page | 5085 |
container_issue | 6 |
container_start_page | 5078 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Yoo, Se-Wook Son, E-In Seo, Seung-Woo |
description | Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments. |
doi_str_mv | 10.1109/LRA.2024.3387042 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3041506468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10496162</ieee_id><sourcerecordid>3041506468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3</originalsourceid><addsrcrecordid>eNpNkDtrwzAUhUVpoaHN3qGDoLNTPWzJHk3oC1ISSjqLa1tqFRwplZSU9NfXIRkynTN85174ELqjZEIpqR5nH_WEEZZPOC8lydkFGjEuZcalEJdn_RqNY1wRQmjBJK-KEVLLADsdIjS2t2mf1b8QNK472CS703g-xNr-QbLeYeMDXkD6xosenLPuC4Pr8NS7FHyPrcPvfusSWOe3ES91CEO9RVcG-qjHp7xBn89Py-lrNpu_vE3rWdayvEhZW3Ydy6Epyw4Eb5gxRIiiJA1woZlpBMi86xrDWyFapmklS8OZlkVjiKwo8Bv0cLy7Cf5nq2NSK78NbnipOMlpQUQuyoEiR6oNPsagjdoEu4awV5Sog0k1mFQHk-pkcpjcHydWa32G55WggvF_LepwZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041506468</pqid></control><display><type>article</type><title>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoo, Se-Wook ; Son, E-In ; Seo, Seung-Woo</creator><creatorcontrib>Yoo, Se-Wook ; Son, E-In ; Seo, Seung-Woo</creatorcontrib><description>Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3387042</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Autonomous navigation ; Costs ; Field robots ; Human-robot interaction ; integrated planning and learning ; Mountainous areas ; Navigation ; Optimization ; Predictive control ; Propioception ; Robots ; robust/adaptive control ; Terrain</subject><ispartof>IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.5078-5085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3</cites><orcidid>0000-0001-7724-3228 ; 0000-0003-4890-8563 ; 0009-0003-9668-8355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10496162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yoo, Se-Wook</creatorcontrib><creatorcontrib>Son, E-In</creatorcontrib><creatorcontrib>Seo, Seung-Woo</creatorcontrib><title>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Autonomous navigation</subject><subject>Costs</subject><subject>Field robots</subject><subject>Human-robot interaction</subject><subject>integrated planning and learning</subject><subject>Mountainous areas</subject><subject>Navigation</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Propioception</subject><subject>Robots</subject><subject>robust/adaptive control</subject><subject>Terrain</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtrwzAUhUVpoaHN3qGDoLNTPWzJHk3oC1ISSjqLa1tqFRwplZSU9NfXIRkynTN85174ELqjZEIpqR5nH_WEEZZPOC8lydkFGjEuZcalEJdn_RqNY1wRQmjBJK-KEVLLADsdIjS2t2mf1b8QNK472CS703g-xNr-QbLeYeMDXkD6xosenLPuC4Pr8NS7FHyPrcPvfusSWOe3ES91CEO9RVcG-qjHp7xBn89Py-lrNpu_vE3rWdayvEhZW3Ydy6Epyw4Eb5gxRIiiJA1woZlpBMi86xrDWyFapmklS8OZlkVjiKwo8Bv0cLy7Cf5nq2NSK78NbnipOMlpQUQuyoEiR6oNPsagjdoEu4awV5Sog0k1mFQHk-pkcpjcHydWa32G55WggvF_LepwZg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yoo, Se-Wook</creator><creator>Son, E-In</creator><creator>Seo, Seung-Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7724-3228</orcidid><orcidid>https://orcid.org/0000-0003-4890-8563</orcidid><orcidid>https://orcid.org/0009-0003-9668-8355</orcidid></search><sort><creationdate>20240601</creationdate><title>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</title><author>Yoo, Se-Wook ; Son, E-In ; Seo, Seung-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Autonomous navigation</topic><topic>Costs</topic><topic>Field robots</topic><topic>Human-robot interaction</topic><topic>integrated planning and learning</topic><topic>Mountainous areas</topic><topic>Navigation</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Propioception</topic><topic>Robots</topic><topic>robust/adaptive control</topic><topic>Terrain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Se-Wook</creatorcontrib><creatorcontrib>Son, E-In</creatorcontrib><creatorcontrib>Seo, Seung-Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Se-Wook</au><au>Son, E-In</au><au>Seo, Seung-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>5078</spage><epage>5085</epage><pages>5078-5085</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3387042</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7724-3228</orcidid><orcidid>https://orcid.org/0000-0003-4890-8563</orcidid><orcidid>https://orcid.org/0009-0003-9668-8355</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.5078-5085 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_3041506468 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Adaptive control Autonomous navigation Costs Field robots Human-robot interaction integrated planning and learning Mountainous areas Navigation Optimization Predictive control Propioception Robots robust/adaptive control Terrain |
title | Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traversability-Aware%20Adaptive%20Optimization%20for%20Path%20Planning%20and%20Control%20in%20Mountainous%20Terrain&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Yoo,%20Se-Wook&rft.date=2024-06-01&rft.volume=9&rft.issue=6&rft.spage=5078&rft.epage=5085&rft.pages=5078-5085&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3387042&rft_dat=%3Cproquest_ieee_%3E3041506468%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041506468&rft_id=info:pmid/&rft_ieee_id=10496162&rfr_iscdi=true |