Loading…

Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain

Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on ext...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2024-06, Vol.9 (6), p.5078-5085
Main Authors: Yoo, Se-Wook, Son, E-In, Seo, Seung-Woo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3
container_end_page 5085
container_issue 6
container_start_page 5078
container_title IEEE robotics and automation letters
container_volume 9
creator Yoo, Se-Wook
Son, E-In
Seo, Seung-Woo
description Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.
doi_str_mv 10.1109/LRA.2024.3387042
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3041506468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10496162</ieee_id><sourcerecordid>3041506468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3</originalsourceid><addsrcrecordid>eNpNkDtrwzAUhUVpoaHN3qGDoLNTPWzJHk3oC1ISSjqLa1tqFRwplZSU9NfXIRkynTN85174ELqjZEIpqR5nH_WEEZZPOC8lydkFGjEuZcalEJdn_RqNY1wRQmjBJK-KEVLLADsdIjS2t2mf1b8QNK472CS703g-xNr-QbLeYeMDXkD6xosenLPuC4Pr8NS7FHyPrcPvfusSWOe3ES91CEO9RVcG-qjHp7xBn89Py-lrNpu_vE3rWdayvEhZW3Ydy6Epyw4Eb5gxRIiiJA1woZlpBMi86xrDWyFapmklS8OZlkVjiKwo8Bv0cLy7Cf5nq2NSK78NbnipOMlpQUQuyoEiR6oNPsagjdoEu4awV5Sog0k1mFQHk-pkcpjcHydWa32G55WggvF_LepwZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041506468</pqid></control><display><type>article</type><title>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoo, Se-Wook ; Son, E-In ; Seo, Seung-Woo</creator><creatorcontrib>Yoo, Se-Wook ; Son, E-In ; Seo, Seung-Woo</creatorcontrib><description>Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3387042</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Autonomous navigation ; Costs ; Field robots ; Human-robot interaction ; integrated planning and learning ; Mountainous areas ; Navigation ; Optimization ; Predictive control ; Propioception ; Robots ; robust/adaptive control ; Terrain</subject><ispartof>IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.5078-5085</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3</cites><orcidid>0000-0001-7724-3228 ; 0000-0003-4890-8563 ; 0009-0003-9668-8355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10496162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yoo, Se-Wook</creatorcontrib><creatorcontrib>Son, E-In</creatorcontrib><creatorcontrib>Seo, Seung-Woo</creatorcontrib><title>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Autonomous navigation</subject><subject>Costs</subject><subject>Field robots</subject><subject>Human-robot interaction</subject><subject>integrated planning and learning</subject><subject>Mountainous areas</subject><subject>Navigation</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Propioception</subject><subject>Robots</subject><subject>robust/adaptive control</subject><subject>Terrain</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtrwzAUhUVpoaHN3qGDoLNTPWzJHk3oC1ISSjqLa1tqFRwplZSU9NfXIRkynTN85174ELqjZEIpqR5nH_WEEZZPOC8lydkFGjEuZcalEJdn_RqNY1wRQmjBJK-KEVLLADsdIjS2t2mf1b8QNK472CS703g-xNr-QbLeYeMDXkD6xosenLPuC4Pr8NS7FHyPrcPvfusSWOe3ES91CEO9RVcG-qjHp7xBn89Py-lrNpu_vE3rWdayvEhZW3Ydy6Epyw4Eb5gxRIiiJA1woZlpBMi86xrDWyFapmklS8OZlkVjiKwo8Bv0cLy7Cf5nq2NSK78NbnipOMlpQUQuyoEiR6oNPsagjdoEu4awV5Sog0k1mFQHk-pkcpjcHydWa32G55WggvF_LepwZg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yoo, Se-Wook</creator><creator>Son, E-In</creator><creator>Seo, Seung-Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7724-3228</orcidid><orcidid>https://orcid.org/0000-0003-4890-8563</orcidid><orcidid>https://orcid.org/0009-0003-9668-8355</orcidid></search><sort><creationdate>20240601</creationdate><title>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</title><author>Yoo, Se-Wook ; Son, E-In ; Seo, Seung-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Autonomous navigation</topic><topic>Costs</topic><topic>Field robots</topic><topic>Human-robot interaction</topic><topic>integrated planning and learning</topic><topic>Mountainous areas</topic><topic>Navigation</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Propioception</topic><topic>Robots</topic><topic>robust/adaptive control</topic><topic>Terrain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Se-Wook</creatorcontrib><creatorcontrib>Son, E-In</creatorcontrib><creatorcontrib>Seo, Seung-Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Se-Wook</au><au>Son, E-In</au><au>Seo, Seung-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>5078</spage><epage>5085</epage><pages>5078-5085</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Autonomous navigation in extreme mountainous terrains poses challenges due to the presence of mobility-stressing elements and undulating surfaces, making it particularly difficult compared to conventional off-road driving scenarios. In such environments, estimating traversability solely based on exteroceptive sensors often leads to the inability to reach the goal due to a high prevalence of non-traversable areas. In this letter, we consider traversability as a relative value that integrates the robot's internal state, such as speed and torque to exhibit resilient behavior to reach its goal successfully. We separate traversability into apparent traversability and relative traversability, then incorporate these distinctions in the optimization process of sampling-based planning and motion predictive control. Our method enables the robots to execute the desired behaviors more accurately while avoiding hazardous regions and getting stuck. Experiments conducted on simulation with 27 diverse types of mountainous terrain and real-world demonstrate the robustness of the proposed framework, with increasingly better performance observed in more complex environments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3387042</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7724-3228</orcidid><orcidid>https://orcid.org/0000-0003-4890-8563</orcidid><orcidid>https://orcid.org/0009-0003-9668-8355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-06, Vol.9 (6), p.5078-5085
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_3041506468
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Adaptive control
Autonomous navigation
Costs
Field robots
Human-robot interaction
integrated planning and learning
Mountainous areas
Navigation
Optimization
Predictive control
Propioception
Robots
robust/adaptive control
Terrain
title Traversability-Aware Adaptive Optimization for Path Planning and Control in Mountainous Terrain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traversability-Aware%20Adaptive%20Optimization%20for%20Path%20Planning%20and%20Control%20in%20Mountainous%20Terrain&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Yoo,%20Se-Wook&rft.date=2024-06-01&rft.volume=9&rft.issue=6&rft.spage=5078&rft.epage=5085&rft.pages=5078-5085&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3387042&rft_dat=%3Cproquest_ieee_%3E3041506468%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-c8dd24ab88da63b2ff066580ba36e2fb6a74ddbf3c66c2e1978f32e75bf0791a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041506468&rft_id=info:pmid/&rft_ieee_id=10496162&rfr_iscdi=true