Loading…

Early identification of gastric pains through the tongue images using radial basis function

Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identificatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Hizriadi, Ainul, Herriyance, Rahmat, Romi Fadillah, Husna, Ainul, Faza, Sharfina, Ruhayem, Nur Intan Raihana
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2987
creator Hizriadi, Ainul
Herriyance
Rahmat, Romi Fadillah
Husna, Ainul
Faza, Sharfina
Ruhayem, Nur Intan Raihana
description Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.
doi_str_mv 10.1063/5.0200115
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3041541561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041541561</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c8859e74f8554cee80e30a7cceda49e21cbd8512ca31b391763a9055c59c07863</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7D6vpvNJjlKqR9Q8KIgeAhpNrtNqdk1yR76793awsBchmeYIeQW4QGhZo_8AUoARH5GZsg5FqLG-pzMAFRVlBX7uiRXKW0BSiWEnJHvpYm7PfWNC9m33prs-0D7lnYm5egtHYwPieZN7MduM7mjuQ_d6Kj_MZ1LdEw-dDSaxpsdXZvkE23HYA-Ya3LRml1yNyefk8_n5cfitVi9v7wtnlbFgIzlwkrJlRNVKzmvrHMSHAMjrHWNqZQr0a4bybG0huGaKRQ1Mwo4t1xZELJmc3J35A6x_x1dynrbjzFMlZpBhXxSjVPq_phK1uf_mXqI04i41wj6cJ7m-nQe-wONeWF3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3041541561</pqid></control><display><type>conference_proceeding</type><title>Early identification of gastric pains through the tongue images using radial basis function</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hizriadi, Ainul ; Herriyance ; Rahmat, Romi Fadillah ; Husna, Ainul ; Faza, Sharfina ; Ruhayem, Nur Intan Raihana</creator><contributor>Tarigan, Jos Timanta ; Lydia, Maya Silvi ; Jaya, Ivan</contributor><creatorcontrib>Hizriadi, Ainul ; Herriyance ; Rahmat, Romi Fadillah ; Husna, Ainul ; Faza, Sharfina ; Ruhayem, Nur Intan Raihana ; Tarigan, Jos Timanta ; Lydia, Maya Silvi ; Jaya, Ivan</creatorcontrib><description>Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0200115</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Feature extraction ; Identification methods ; Image processing ; Neural networks ; Radial basis function ; Saturation (color) ; Tongue</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2987 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Tarigan, Jos Timanta</contributor><contributor>Lydia, Maya Silvi</contributor><contributor>Jaya, Ivan</contributor><creatorcontrib>Hizriadi, Ainul</creatorcontrib><creatorcontrib>Herriyance</creatorcontrib><creatorcontrib>Rahmat, Romi Fadillah</creatorcontrib><creatorcontrib>Husna, Ainul</creatorcontrib><creatorcontrib>Faza, Sharfina</creatorcontrib><creatorcontrib>Ruhayem, Nur Intan Raihana</creatorcontrib><title>Early identification of gastric pains through the tongue images using radial basis function</title><title>AIP Conference Proceedings</title><description>Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.</description><subject>Feature extraction</subject><subject>Identification methods</subject><subject>Image processing</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Saturation (color)</subject><subject>Tongue</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7D6vpvNJjlKqR9Q8KIgeAhpNrtNqdk1yR76793awsBchmeYIeQW4QGhZo_8AUoARH5GZsg5FqLG-pzMAFRVlBX7uiRXKW0BSiWEnJHvpYm7PfWNC9m33prs-0D7lnYm5egtHYwPieZN7MduM7mjuQ_d6Kj_MZ1LdEw-dDSaxpsdXZvkE23HYA-Ya3LRml1yNyefk8_n5cfitVi9v7wtnlbFgIzlwkrJlRNVKzmvrHMSHAMjrHWNqZQr0a4bybG0huGaKRQ1Mwo4t1xZELJmc3J35A6x_x1dynrbjzFMlZpBhXxSjVPq_phK1uf_mXqI04i41wj6cJ7m-nQe-wONeWF3</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Hizriadi, Ainul</creator><creator>Herriyance</creator><creator>Rahmat, Romi Fadillah</creator><creator>Husna, Ainul</creator><creator>Faza, Sharfina</creator><creator>Ruhayem, Nur Intan Raihana</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240419</creationdate><title>Early identification of gastric pains through the tongue images using radial basis function</title><author>Hizriadi, Ainul ; Herriyance ; Rahmat, Romi Fadillah ; Husna, Ainul ; Faza, Sharfina ; Ruhayem, Nur Intan Raihana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c8859e74f8554cee80e30a7cceda49e21cbd8512ca31b391763a9055c59c07863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Feature extraction</topic><topic>Identification methods</topic><topic>Image processing</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Saturation (color)</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hizriadi, Ainul</creatorcontrib><creatorcontrib>Herriyance</creatorcontrib><creatorcontrib>Rahmat, Romi Fadillah</creatorcontrib><creatorcontrib>Husna, Ainul</creatorcontrib><creatorcontrib>Faza, Sharfina</creatorcontrib><creatorcontrib>Ruhayem, Nur Intan Raihana</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hizriadi, Ainul</au><au>Herriyance</au><au>Rahmat, Romi Fadillah</au><au>Husna, Ainul</au><au>Faza, Sharfina</au><au>Ruhayem, Nur Intan Raihana</au><au>Tarigan, Jos Timanta</au><au>Lydia, Maya Silvi</au><au>Jaya, Ivan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Early identification of gastric pains through the tongue images using radial basis function</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-04-19</date><risdate>2024</risdate><volume>2987</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200115</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.2987 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3041541561
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Feature extraction
Identification methods
Image processing
Neural networks
Radial basis function
Saturation (color)
Tongue
title Early identification of gastric pains through the tongue images using radial basis function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Early%20identification%20of%20gastric%20pains%20through%20the%20tongue%20images%20using%20radial%20basis%20function&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Hizriadi,%20Ainul&rft.date=2024-04-19&rft.volume=2987&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0200115&rft_dat=%3Cproquest_scita%3E3041541561%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-c8859e74f8554cee80e30a7cceda49e21cbd8512ca31b391763a9055c59c07863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041541561&rft_id=info:pmid/&rfr_iscdi=true