Loading…
Early identification of gastric pains through the tongue images using radial basis function
Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identificatio...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2987 |
creator | Hizriadi, Ainul Herriyance Rahmat, Romi Fadillah Husna, Ainul Faza, Sharfina Ruhayem, Nur Intan Raihana |
description | Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images. |
doi_str_mv | 10.1063/5.0200115 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3041541561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041541561</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c8859e74f8554cee80e30a7cceda49e21cbd8512ca31b391763a9055c59c07863</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7D6vpvNJjlKqR9Q8KIgeAhpNrtNqdk1yR76793awsBchmeYIeQW4QGhZo_8AUoARH5GZsg5FqLG-pzMAFRVlBX7uiRXKW0BSiWEnJHvpYm7PfWNC9m33prs-0D7lnYm5egtHYwPieZN7MduM7mjuQ_d6Kj_MZ1LdEw-dDSaxpsdXZvkE23HYA-Ya3LRml1yNyefk8_n5cfitVi9v7wtnlbFgIzlwkrJlRNVKzmvrHMSHAMjrHWNqZQr0a4bybG0huGaKRQ1Mwo4t1xZELJmc3J35A6x_x1dynrbjzFMlZpBhXxSjVPq_phK1uf_mXqI04i41wj6cJ7m-nQe-wONeWF3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3041541561</pqid></control><display><type>conference_proceeding</type><title>Early identification of gastric pains through the tongue images using radial basis function</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hizriadi, Ainul ; Herriyance ; Rahmat, Romi Fadillah ; Husna, Ainul ; Faza, Sharfina ; Ruhayem, Nur Intan Raihana</creator><contributor>Tarigan, Jos Timanta ; Lydia, Maya Silvi ; Jaya, Ivan</contributor><creatorcontrib>Hizriadi, Ainul ; Herriyance ; Rahmat, Romi Fadillah ; Husna, Ainul ; Faza, Sharfina ; Ruhayem, Nur Intan Raihana ; Tarigan, Jos Timanta ; Lydia, Maya Silvi ; Jaya, Ivan</creatorcontrib><description>Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0200115</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Feature extraction ; Identification methods ; Image processing ; Neural networks ; Radial basis function ; Saturation (color) ; Tongue</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2987 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Tarigan, Jos Timanta</contributor><contributor>Lydia, Maya Silvi</contributor><contributor>Jaya, Ivan</contributor><creatorcontrib>Hizriadi, Ainul</creatorcontrib><creatorcontrib>Herriyance</creatorcontrib><creatorcontrib>Rahmat, Romi Fadillah</creatorcontrib><creatorcontrib>Husna, Ainul</creatorcontrib><creatorcontrib>Faza, Sharfina</creatorcontrib><creatorcontrib>Ruhayem, Nur Intan Raihana</creatorcontrib><title>Early identification of gastric pains through the tongue images using radial basis function</title><title>AIP Conference Proceedings</title><description>Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.</description><subject>Feature extraction</subject><subject>Identification methods</subject><subject>Image processing</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Saturation (color)</subject><subject>Tongue</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7D6vpvNJjlKqR9Q8KIgeAhpNrtNqdk1yR76793awsBchmeYIeQW4QGhZo_8AUoARH5GZsg5FqLG-pzMAFRVlBX7uiRXKW0BSiWEnJHvpYm7PfWNC9m33prs-0D7lnYm5egtHYwPieZN7MduM7mjuQ_d6Kj_MZ1LdEw-dDSaxpsdXZvkE23HYA-Ya3LRml1yNyefk8_n5cfitVi9v7wtnlbFgIzlwkrJlRNVKzmvrHMSHAMjrHWNqZQr0a4bybG0huGaKRQ1Mwo4t1xZELJmc3J35A6x_x1dynrbjzFMlZpBhXxSjVPq_phK1uf_mXqI04i41wj6cJ7m-nQe-wONeWF3</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Hizriadi, Ainul</creator><creator>Herriyance</creator><creator>Rahmat, Romi Fadillah</creator><creator>Husna, Ainul</creator><creator>Faza, Sharfina</creator><creator>Ruhayem, Nur Intan Raihana</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240419</creationdate><title>Early identification of gastric pains through the tongue images using radial basis function</title><author>Hizriadi, Ainul ; Herriyance ; Rahmat, Romi Fadillah ; Husna, Ainul ; Faza, Sharfina ; Ruhayem, Nur Intan Raihana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c8859e74f8554cee80e30a7cceda49e21cbd8512ca31b391763a9055c59c07863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Feature extraction</topic><topic>Identification methods</topic><topic>Image processing</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Saturation (color)</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hizriadi, Ainul</creatorcontrib><creatorcontrib>Herriyance</creatorcontrib><creatorcontrib>Rahmat, Romi Fadillah</creatorcontrib><creatorcontrib>Husna, Ainul</creatorcontrib><creatorcontrib>Faza, Sharfina</creatorcontrib><creatorcontrib>Ruhayem, Nur Intan Raihana</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hizriadi, Ainul</au><au>Herriyance</au><au>Rahmat, Romi Fadillah</au><au>Husna, Ainul</au><au>Faza, Sharfina</au><au>Ruhayem, Nur Intan Raihana</au><au>Tarigan, Jos Timanta</au><au>Lydia, Maya Silvi</au><au>Jaya, Ivan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Early identification of gastric pains through the tongue images using radial basis function</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-04-19</date><risdate>2024</risdate><volume>2987</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Gastritis is a disease that occurs in the stomach and can be dangerous if not treated quickly. Gastritis can affect anyone, young or old. Therefore, a system is needed to identify early gastritis identification so that it can help the community to find out early on their gastritis. The identification method used in this study is the Radial Basis Function Neural Network with several image processing techniques. Tongue image is used as input image for image processing. Prior to the initial identification, the image preprocessing process is carried out, namely cropping, resizing, brightness, image feature extraction using color extraction using Hue Saturation Value (HSV). The dataset used in this study are limited to 150 tongue images and resulted in the ability to identify early gastritis with an accuracy of 93.3% for 50 testing images.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200115</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.2987 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3041541561 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Feature extraction Identification methods Image processing Neural networks Radial basis function Saturation (color) Tongue |
title | Early identification of gastric pains through the tongue images using radial basis function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A37%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Early%20identification%20of%20gastric%20pains%20through%20the%20tongue%20images%20using%20radial%20basis%20function&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Hizriadi,%20Ainul&rft.date=2024-04-19&rft.volume=2987&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0200115&rft_dat=%3Cproquest_scita%3E3041541561%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-c8859e74f8554cee80e30a7cceda49e21cbd8512ca31b391763a9055c59c07863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041541561&rft_id=info:pmid/&rfr_iscdi=true |