Loading…

Solar steam-driven membrane filtration for high flux water purification

In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an...

Full description

Saved in:
Bibliographic Details
Published in:Nature water 2023-04, Vol.1 (4), p.391-398
Main Authors: Wang, Xueyang, Lin, Zhenhui, Gao, Jintong, Xu, Zhenyuan, Li, Xiuqiang, Xu, Ning, Li, Jinlei, Song, Yan, Fu, Hanyu, Zhao, Wei, Wang, Shuaihao, Zhu, Bin, Wang, Ruzhu, Zhu, Jia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63
cites cdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63
container_end_page 398
container_issue 4
container_start_page 391
container_title Nature water
container_volume 1
creator Wang, Xueyang
Lin, Zhenhui
Gao, Jintong
Xu, Zhenyuan
Li, Xiuqiang
Xu, Ning
Li, Jinlei
Song, Yan
Fu, Hanyu
Zhao, Wei
Wang, Shuaihao
Zhu, Bin
Wang, Ruzhu
Zhu, Jia
description In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.
doi_str_mv 10.1038/s44221-023-00059-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3041696009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041696009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr_gKuA6-jNY9JkKUWrUHChrkOah02ZR01mfPx7x44LV-dy-LgHPoQuKVxT4OqmCMEYJcA4AYBKE3WCZmzJKZGgxOm_-xwtStmPEFOM0krM0Pq5q23GpQ-2IT6nj9DiJjTbbNuAY6r7bPvUtTh2Ge_S2w7HevjCn7YPGR-GnGJyR-ACnUVbl7D4yzl6vb97WT2QzdP6cXW7IY5B1RMmGHfjtF46iN4tZfAichWDkD5o67daV1zQKCllSkcvOB1LcMx68BAkn6Or6e8hd-9DKL3Zd0Nux0nDQVCpJYAeKTZRLnel5BDNIafG5m9Dwfw6M5MzMzozR2dG8R8VaF8P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041696009</pqid></control><display><type>article</type><title>Solar steam-driven membrane filtration for high flux water purification</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><creator>Wang, Xueyang ; Lin, Zhenhui ; Gao, Jintong ; Xu, Zhenyuan ; Li, Xiuqiang ; Xu, Ning ; Li, Jinlei ; Song, Yan ; Fu, Hanyu ; Zhao, Wei ; Wang, Shuaihao ; Zhu, Bin ; Wang, Ruzhu ; Zhu, Jia</creator><creatorcontrib>Wang, Xueyang ; Lin, Zhenhui ; Gao, Jintong ; Xu, Zhenyuan ; Li, Xiuqiang ; Xu, Ning ; Li, Jinlei ; Song, Yan ; Fu, Hanyu ; Zhao, Wei ; Wang, Shuaihao ; Zhu, Bin ; Wang, Ruzhu ; Zhu, Jia</creatorcontrib><description>In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.</description><identifier>ISSN: 2731-6084</identifier><identifier>EISSN: 2731-6084</identifier><identifier>DOI: 10.1038/s44221-023-00059-8</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Annealing ; Carbon ; Condensates ; Contact angle ; Decentralization ; Desalination ; Design ; Drinking water ; Energy consumption ; Evaporation ; Evaporation rate ; Filtration ; Freshwater resources ; Heat conductivity ; High pressure ; High temperature ; Insulation ; Latent heat ; Localization ; Membrane filtration ; Membranes ; Nanofiltration ; Nanotechnology ; Purification ; Reverse osmosis ; Scanning electron microscopy ; Seawater ; Steam generation ; Thermal insulation ; Water chemistry ; Water purification ; Water supply</subject><ispartof>Nature water, 2023-04, Vol.1 (4), p.391-398</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</citedby><cites>FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</cites><orcidid>0000-0002-2871-4369 ; 0000-0003-3586-5728 ; 0000-0002-5785-650X ; 0000-0002-6467-6961 ; 0009-0007-5727-188X ; 0000-0001-5237-4774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3041696009?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,12826,21373,27901,27902,33200,33588,43709</link.rule.ids></links><search><creatorcontrib>Wang, Xueyang</creatorcontrib><creatorcontrib>Lin, Zhenhui</creatorcontrib><creatorcontrib>Gao, Jintong</creatorcontrib><creatorcontrib>Xu, Zhenyuan</creatorcontrib><creatorcontrib>Li, Xiuqiang</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Li, Jinlei</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Fu, Hanyu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Shuaihao</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Wang, Ruzhu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><title>Solar steam-driven membrane filtration for high flux water purification</title><title>Nature water</title><description>In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.</description><subject>Annealing</subject><subject>Carbon</subject><subject>Condensates</subject><subject>Contact angle</subject><subject>Decentralization</subject><subject>Desalination</subject><subject>Design</subject><subject>Drinking water</subject><subject>Energy consumption</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Filtration</subject><subject>Freshwater resources</subject><subject>Heat conductivity</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Insulation</subject><subject>Latent heat</subject><subject>Localization</subject><subject>Membrane filtration</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Purification</subject><subject>Reverse osmosis</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>Steam generation</subject><subject>Thermal insulation</subject><subject>Water chemistry</subject><subject>Water purification</subject><subject>Water supply</subject><issn>2731-6084</issn><issn>2731-6084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNpNkEtLAzEUhYMoWGr_gKuA6-jNY9JkKUWrUHChrkOah02ZR01mfPx7x44LV-dy-LgHPoQuKVxT4OqmCMEYJcA4AYBKE3WCZmzJKZGgxOm_-xwtStmPEFOM0krM0Pq5q23GpQ-2IT6nj9DiJjTbbNuAY6r7bPvUtTh2Ge_S2w7HevjCn7YPGR-GnGJyR-ACnUVbl7D4yzl6vb97WT2QzdP6cXW7IY5B1RMmGHfjtF46iN4tZfAichWDkD5o67daV1zQKCllSkcvOB1LcMx68BAkn6Or6e8hd-9DKL3Zd0Nux0nDQVCpJYAeKTZRLnel5BDNIafG5m9Dwfw6M5MzMzozR2dG8R8VaF8P</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Xueyang</creator><creator>Lin, Zhenhui</creator><creator>Gao, Jintong</creator><creator>Xu, Zhenyuan</creator><creator>Li, Xiuqiang</creator><creator>Xu, Ning</creator><creator>Li, Jinlei</creator><creator>Song, Yan</creator><creator>Fu, Hanyu</creator><creator>Zhao, Wei</creator><creator>Wang, Shuaihao</creator><creator>Zhu, Bin</creator><creator>Wang, Ruzhu</creator><creator>Zhu, Jia</creator><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M2R</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid><orcidid>https://orcid.org/0000-0002-5785-650X</orcidid><orcidid>https://orcid.org/0000-0002-6467-6961</orcidid><orcidid>https://orcid.org/0009-0007-5727-188X</orcidid><orcidid>https://orcid.org/0000-0001-5237-4774</orcidid></search><sort><creationdate>20230401</creationdate><title>Solar steam-driven membrane filtration for high flux water purification</title><author>Wang, Xueyang ; Lin, Zhenhui ; Gao, Jintong ; Xu, Zhenyuan ; Li, Xiuqiang ; Xu, Ning ; Li, Jinlei ; Song, Yan ; Fu, Hanyu ; Zhao, Wei ; Wang, Shuaihao ; Zhu, Bin ; Wang, Ruzhu ; Zhu, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Carbon</topic><topic>Condensates</topic><topic>Contact angle</topic><topic>Decentralization</topic><topic>Desalination</topic><topic>Design</topic><topic>Drinking water</topic><topic>Energy consumption</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Filtration</topic><topic>Freshwater resources</topic><topic>Heat conductivity</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Insulation</topic><topic>Latent heat</topic><topic>Localization</topic><topic>Membrane filtration</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Purification</topic><topic>Reverse osmosis</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>Steam generation</topic><topic>Thermal insulation</topic><topic>Water chemistry</topic><topic>Water purification</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xueyang</creatorcontrib><creatorcontrib>Lin, Zhenhui</creatorcontrib><creatorcontrib>Gao, Jintong</creatorcontrib><creatorcontrib>Xu, Zhenyuan</creatorcontrib><creatorcontrib>Li, Xiuqiang</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Li, Jinlei</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Fu, Hanyu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Shuaihao</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Wang, Ruzhu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Social Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xueyang</au><au>Lin, Zhenhui</au><au>Gao, Jintong</au><au>Xu, Zhenyuan</au><au>Li, Xiuqiang</au><au>Xu, Ning</au><au>Li, Jinlei</au><au>Song, Yan</au><au>Fu, Hanyu</au><au>Zhao, Wei</au><au>Wang, Shuaihao</au><au>Zhu, Bin</au><au>Wang, Ruzhu</au><au>Zhu, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar steam-driven membrane filtration for high flux water purification</atitle><jtitle>Nature water</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>1</volume><issue>4</issue><spage>391</spage><epage>398</epage><pages>391-398</pages><issn>2731-6084</issn><eissn>2731-6084</eissn><abstract>In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s44221-023-00059-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid><orcidid>https://orcid.org/0000-0002-5785-650X</orcidid><orcidid>https://orcid.org/0000-0002-6467-6961</orcidid><orcidid>https://orcid.org/0009-0007-5727-188X</orcidid><orcidid>https://orcid.org/0000-0001-5237-4774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2731-6084
ispartof Nature water, 2023-04, Vol.1 (4), p.391-398
issn 2731-6084
2731-6084
language eng
recordid cdi_proquest_journals_3041696009
source International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection
subjects Annealing
Carbon
Condensates
Contact angle
Decentralization
Desalination
Design
Drinking water
Energy consumption
Evaporation
Evaporation rate
Filtration
Freshwater resources
Heat conductivity
High pressure
High temperature
Insulation
Latent heat
Localization
Membrane filtration
Membranes
Nanofiltration
Nanotechnology
Purification
Reverse osmosis
Scanning electron microscopy
Seawater
Steam generation
Thermal insulation
Water chemistry
Water purification
Water supply
title Solar steam-driven membrane filtration for high flux water purification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20steam-driven%20membrane%20filtration%20for%20high%20flux%20water%20purification&rft.jtitle=Nature%20water&rft.au=Wang,%20Xueyang&rft.date=2023-04-01&rft.volume=1&rft.issue=4&rft.spage=391&rft.epage=398&rft.pages=391-398&rft.issn=2731-6084&rft.eissn=2731-6084&rft_id=info:doi/10.1038/s44221-023-00059-8&rft_dat=%3Cproquest_cross%3E3041696009%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041696009&rft_id=info:pmid/&rfr_iscdi=true