Loading…
Solar steam-driven membrane filtration for high flux water purification
In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an...
Saved in:
Published in: | Nature water 2023-04, Vol.1 (4), p.391-398 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63 |
container_end_page | 398 |
container_issue | 4 |
container_start_page | 391 |
container_title | Nature water |
container_volume | 1 |
creator | Wang, Xueyang Lin, Zhenhui Gao, Jintong Xu, Zhenyuan Li, Xiuqiang Xu, Ning Li, Jinlei Song, Yan Fu, Hanyu Zhao, Wei Wang, Shuaihao Zhu, Bin Wang, Ruzhu Zhu, Jia |
description | In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process. |
doi_str_mv | 10.1038/s44221-023-00059-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3041696009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041696009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr_gKuA6-jNY9JkKUWrUHChrkOah02ZR01mfPx7x44LV-dy-LgHPoQuKVxT4OqmCMEYJcA4AYBKE3WCZmzJKZGgxOm_-xwtStmPEFOM0krM0Pq5q23GpQ-2IT6nj9DiJjTbbNuAY6r7bPvUtTh2Ge_S2w7HevjCn7YPGR-GnGJyR-ACnUVbl7D4yzl6vb97WT2QzdP6cXW7IY5B1RMmGHfjtF46iN4tZfAichWDkD5o67daV1zQKCllSkcvOB1LcMx68BAkn6Or6e8hd-9DKL3Zd0Nux0nDQVCpJYAeKTZRLnel5BDNIafG5m9Dwfw6M5MzMzozR2dG8R8VaF8P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041696009</pqid></control><display><type>article</type><title>Solar steam-driven membrane filtration for high flux water purification</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Social Science Premium Collection</source><creator>Wang, Xueyang ; Lin, Zhenhui ; Gao, Jintong ; Xu, Zhenyuan ; Li, Xiuqiang ; Xu, Ning ; Li, Jinlei ; Song, Yan ; Fu, Hanyu ; Zhao, Wei ; Wang, Shuaihao ; Zhu, Bin ; Wang, Ruzhu ; Zhu, Jia</creator><creatorcontrib>Wang, Xueyang ; Lin, Zhenhui ; Gao, Jintong ; Xu, Zhenyuan ; Li, Xiuqiang ; Xu, Ning ; Li, Jinlei ; Song, Yan ; Fu, Hanyu ; Zhao, Wei ; Wang, Shuaihao ; Zhu, Bin ; Wang, Ruzhu ; Zhu, Jia</creatorcontrib><description>In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.</description><identifier>ISSN: 2731-6084</identifier><identifier>EISSN: 2731-6084</identifier><identifier>DOI: 10.1038/s44221-023-00059-8</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Annealing ; Carbon ; Condensates ; Contact angle ; Decentralization ; Desalination ; Design ; Drinking water ; Energy consumption ; Evaporation ; Evaporation rate ; Filtration ; Freshwater resources ; Heat conductivity ; High pressure ; High temperature ; Insulation ; Latent heat ; Localization ; Membrane filtration ; Membranes ; Nanofiltration ; Nanotechnology ; Purification ; Reverse osmosis ; Scanning electron microscopy ; Seawater ; Steam generation ; Thermal insulation ; Water chemistry ; Water purification ; Water supply</subject><ispartof>Nature water, 2023-04, Vol.1 (4), p.391-398</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</citedby><cites>FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</cites><orcidid>0000-0002-2871-4369 ; 0000-0003-3586-5728 ; 0000-0002-5785-650X ; 0000-0002-6467-6961 ; 0009-0007-5727-188X ; 0000-0001-5237-4774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3041696009?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,12826,21373,27901,27902,33200,33588,43709</link.rule.ids></links><search><creatorcontrib>Wang, Xueyang</creatorcontrib><creatorcontrib>Lin, Zhenhui</creatorcontrib><creatorcontrib>Gao, Jintong</creatorcontrib><creatorcontrib>Xu, Zhenyuan</creatorcontrib><creatorcontrib>Li, Xiuqiang</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Li, Jinlei</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Fu, Hanyu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Shuaihao</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Wang, Ruzhu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><title>Solar steam-driven membrane filtration for high flux water purification</title><title>Nature water</title><description>In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.</description><subject>Annealing</subject><subject>Carbon</subject><subject>Condensates</subject><subject>Contact angle</subject><subject>Decentralization</subject><subject>Desalination</subject><subject>Design</subject><subject>Drinking water</subject><subject>Energy consumption</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Filtration</subject><subject>Freshwater resources</subject><subject>Heat conductivity</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Insulation</subject><subject>Latent heat</subject><subject>Localization</subject><subject>Membrane filtration</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Purification</subject><subject>Reverse osmosis</subject><subject>Scanning electron microscopy</subject><subject>Seawater</subject><subject>Steam generation</subject><subject>Thermal insulation</subject><subject>Water chemistry</subject><subject>Water purification</subject><subject>Water supply</subject><issn>2731-6084</issn><issn>2731-6084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>M2R</sourceid><recordid>eNpNkEtLAzEUhYMoWGr_gKuA6-jNY9JkKUWrUHChrkOah02ZR01mfPx7x44LV-dy-LgHPoQuKVxT4OqmCMEYJcA4AYBKE3WCZmzJKZGgxOm_-xwtStmPEFOM0krM0Pq5q23GpQ-2IT6nj9DiJjTbbNuAY6r7bPvUtTh2Ge_S2w7HevjCn7YPGR-GnGJyR-ACnUVbl7D4yzl6vb97WT2QzdP6cXW7IY5B1RMmGHfjtF46iN4tZfAichWDkD5o67daV1zQKCllSkcvOB1LcMx68BAkn6Or6e8hd-9DKL3Zd0Nux0nDQVCpJYAeKTZRLnel5BDNIafG5m9Dwfw6M5MzMzozR2dG8R8VaF8P</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Xueyang</creator><creator>Lin, Zhenhui</creator><creator>Gao, Jintong</creator><creator>Xu, Zhenyuan</creator><creator>Li, Xiuqiang</creator><creator>Xu, Ning</creator><creator>Li, Jinlei</creator><creator>Song, Yan</creator><creator>Fu, Hanyu</creator><creator>Zhao, Wei</creator><creator>Wang, Shuaihao</creator><creator>Zhu, Bin</creator><creator>Wang, Ruzhu</creator><creator>Zhu, Jia</creator><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M2R</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid><orcidid>https://orcid.org/0000-0002-5785-650X</orcidid><orcidid>https://orcid.org/0000-0002-6467-6961</orcidid><orcidid>https://orcid.org/0009-0007-5727-188X</orcidid><orcidid>https://orcid.org/0000-0001-5237-4774</orcidid></search><sort><creationdate>20230401</creationdate><title>Solar steam-driven membrane filtration for high flux water purification</title><author>Wang, Xueyang ; Lin, Zhenhui ; Gao, Jintong ; Xu, Zhenyuan ; Li, Xiuqiang ; Xu, Ning ; Li, Jinlei ; Song, Yan ; Fu, Hanyu ; Zhao, Wei ; Wang, Shuaihao ; Zhu, Bin ; Wang, Ruzhu ; Zhu, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Carbon</topic><topic>Condensates</topic><topic>Contact angle</topic><topic>Decentralization</topic><topic>Desalination</topic><topic>Design</topic><topic>Drinking water</topic><topic>Energy consumption</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Filtration</topic><topic>Freshwater resources</topic><topic>Heat conductivity</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Insulation</topic><topic>Latent heat</topic><topic>Localization</topic><topic>Membrane filtration</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Purification</topic><topic>Reverse osmosis</topic><topic>Scanning electron microscopy</topic><topic>Seawater</topic><topic>Steam generation</topic><topic>Thermal insulation</topic><topic>Water chemistry</topic><topic>Water purification</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xueyang</creatorcontrib><creatorcontrib>Lin, Zhenhui</creatorcontrib><creatorcontrib>Gao, Jintong</creatorcontrib><creatorcontrib>Xu, Zhenyuan</creatorcontrib><creatorcontrib>Li, Xiuqiang</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Li, Jinlei</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Fu, Hanyu</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Wang, Shuaihao</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Wang, Ruzhu</creatorcontrib><creatorcontrib>Zhu, Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Social Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Nature water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xueyang</au><au>Lin, Zhenhui</au><au>Gao, Jintong</au><au>Xu, Zhenyuan</au><au>Li, Xiuqiang</au><au>Xu, Ning</au><au>Li, Jinlei</au><au>Song, Yan</au><au>Fu, Hanyu</au><au>Zhao, Wei</au><au>Wang, Shuaihao</au><au>Zhu, Bin</au><au>Wang, Ruzhu</au><au>Zhu, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar steam-driven membrane filtration for high flux water purification</atitle><jtitle>Nature water</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>1</volume><issue>4</issue><spage>391</spage><epage>398</epage><pages>391-398</pages><issn>2731-6084</issn><eissn>2731-6084</eissn><abstract>In recent years, interfacial solar steam generation has shown great potential for desalination with high solar-to-steam conversion efficiency. However, the freshwater production rate is still limited by the substantial latent heat of water evaporation and condensation efficiency. Here we designed an interfacial solar steam-driven reverse osmosis/nanofiltration device that generates high pressure that pushes water molecules through a filtration membrane to achieve separation from ions. The solar steam-driven reverse osmosis device reaches a water production rate as high as 81 kg m−2 h−1 under 12 sun illumination. Moreover, a theoretical model indicates that there still exists attractive room to further improve the freshwater output by optimizing the thermal insulation and expansion ratio of the device. This work paves a new way to design highly efficient miniaturized or decentralized drinking water devices.Reverse osmosis of seawater is a popular though energy demanding process to produce freshwater. Interfacing reverse osmosis membranes with solar steam generation shows potential for a more efficient desalination process.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s44221-023-00059-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2871-4369</orcidid><orcidid>https://orcid.org/0000-0003-3586-5728</orcidid><orcidid>https://orcid.org/0000-0002-5785-650X</orcidid><orcidid>https://orcid.org/0000-0002-6467-6961</orcidid><orcidid>https://orcid.org/0009-0007-5727-188X</orcidid><orcidid>https://orcid.org/0000-0001-5237-4774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2731-6084 |
ispartof | Nature water, 2023-04, Vol.1 (4), p.391-398 |
issn | 2731-6084 2731-6084 |
language | eng |
recordid | cdi_proquest_journals_3041696009 |
source | International Bibliography of the Social Sciences (IBSS); Social Science Premium Collection |
subjects | Annealing Carbon Condensates Contact angle Decentralization Desalination Design Drinking water Energy consumption Evaporation Evaporation rate Filtration Freshwater resources Heat conductivity High pressure High temperature Insulation Latent heat Localization Membrane filtration Membranes Nanofiltration Nanotechnology Purification Reverse osmosis Scanning electron microscopy Seawater Steam generation Thermal insulation Water chemistry Water purification Water supply |
title | Solar steam-driven membrane filtration for high flux water purification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20steam-driven%20membrane%20filtration%20for%20high%20flux%20water%20purification&rft.jtitle=Nature%20water&rft.au=Wang,%20Xueyang&rft.date=2023-04-01&rft.volume=1&rft.issue=4&rft.spage=391&rft.epage=398&rft.pages=391-398&rft.issn=2731-6084&rft.eissn=2731-6084&rft_id=info:doi/10.1038/s44221-023-00059-8&rft_dat=%3Cproquest_cross%3E3041696009%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c205t-2423c21197c0fdc76ed4f38fe46de9adb995341f611289fd431adb0c2ad0d0e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041696009&rft_id=info:pmid/&rfr_iscdi=true |