Loading…

Collaborative strategy research of target tracking based on natural intelligence by UAV swarm

Regarding the regional area target collaborative tracking problem widely existing in intelligent scenarios, this paper built a distributed UAV swarm framework inspired by natural intelligence to heighten intricate missions’ efficiency. Also, a standoff collaboratively continuous tracking strategy wa...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2024-05, Vol.238 (6), p.549-564
Main Authors: Yin, Shi, Wang, Xiaofang, Luo, Lianyong, Pan, Nan, Zhao, Da, Zhang, Xiayang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-963e34c8ffaee2ce050ad5aec9b6df98bdb04ef8140160cc77ec1a02a704377c3
container_end_page 564
container_issue 6
container_start_page 549
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 238
creator Yin, Shi
Wang, Xiaofang
Luo, Lianyong
Pan, Nan
Zhao, Da
Zhang, Xiayang
description Regarding the regional area target collaborative tracking problem widely existing in intelligent scenarios, this paper built a distributed UAV swarm framework inspired by natural intelligence to heighten intricate missions’ efficiency. Also, a standoff collaboratively continuous tracking strategy was proposed based on a lateral guidance law with an improved Reference Point Guidance (RPG) and a longitudinal guidance law with an improved phase collaboration. Under an uncertain environment, this framework used an improved bat algorithm (IBA) to optimize the speed allocation of the UAV swarm’s online control strategy with information consensus estimation. Compared with a case without the designed transformation, statistically, the results demonstrate that the framework operates efficiently and robustly in phase error convergence, swarm flight distance, and fuel consumption, where a dynamic target exists.
doi_str_mv 10.1177/09544100241233313
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3042415036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544100241233313</sage_id><sourcerecordid>3042415036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-963e34c8ffaee2ce050ad5aec9b6df98bdb04ef8140160cc77ec1a02a704377c3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz6mzH0maYylqhYIX603CZDMbU9Ns3d0q_femVPAgzmUG3o-Bh7FrARMh8vwWilRrASC1kEopoU7YSIIWiQKZnrLRQU8OhnN2EcIahkkzNWKvc9d1WDmPsf0kHuJwULPnngKhN2_cWR7RNxT5IJn3tm94hYFq7nreY9x57HjbR-q6tqHeEK_2fDV74eEL_eaSnVnsAl397DFb3d89zxfJ8unhcT5bJkZmOiZFpkhpM7UWiaQhSAHrFMkUVVbbYlrVFWiyU6FBZGBMnpMRCBJz0CrPjRqzm2Pv1ruPHYVYrt3O98PLUoEemKSgssElji7jXQiebLn17Qb9vhRQHiiWfygOmckxE7Ch39b_A98zuHJ_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3042415036</pqid></control><display><type>article</type><title>Collaborative strategy research of target tracking based on natural intelligence by UAV swarm</title><source>IMechE Titles Via Sage</source><creator>Yin, Shi ; Wang, Xiaofang ; Luo, Lianyong ; Pan, Nan ; Zhao, Da ; Zhang, Xiayang</creator><creatorcontrib>Yin, Shi ; Wang, Xiaofang ; Luo, Lianyong ; Pan, Nan ; Zhao, Da ; Zhang, Xiayang</creatorcontrib><description>Regarding the regional area target collaborative tracking problem widely existing in intelligent scenarios, this paper built a distributed UAV swarm framework inspired by natural intelligence to heighten intricate missions’ efficiency. Also, a standoff collaboratively continuous tracking strategy was proposed based on a lateral guidance law with an improved Reference Point Guidance (RPG) and a longitudinal guidance law with an improved phase collaboration. Under an uncertain environment, this framework used an improved bat algorithm (IBA) to optimize the speed allocation of the UAV swarm’s online control strategy with information consensus estimation. Compared with a case without the designed transformation, statistically, the results demonstrate that the framework operates efficiently and robustly in phase error convergence, swarm flight distance, and fuel consumption, where a dynamic target exists.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/09544100241233313</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Guidance (motion) ; Intelligence ; Phase error ; Tracking problem ; Unmanned aerial vehicles</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2024-05, Vol.238 (6), p.549-564</ispartof><rights>IMechE 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-963e34c8ffaee2ce050ad5aec9b6df98bdb04ef8140160cc77ec1a02a704377c3</cites><orcidid>0000-0001-6634-1711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544100241233313$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544100241233313$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447</link.rule.ids></links><search><creatorcontrib>Yin, Shi</creatorcontrib><creatorcontrib>Wang, Xiaofang</creatorcontrib><creatorcontrib>Luo, Lianyong</creatorcontrib><creatorcontrib>Pan, Nan</creatorcontrib><creatorcontrib>Zhao, Da</creatorcontrib><creatorcontrib>Zhang, Xiayang</creatorcontrib><title>Collaborative strategy research of target tracking based on natural intelligence by UAV swarm</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Regarding the regional area target collaborative tracking problem widely existing in intelligent scenarios, this paper built a distributed UAV swarm framework inspired by natural intelligence to heighten intricate missions’ efficiency. Also, a standoff collaboratively continuous tracking strategy was proposed based on a lateral guidance law with an improved Reference Point Guidance (RPG) and a longitudinal guidance law with an improved phase collaboration. Under an uncertain environment, this framework used an improved bat algorithm (IBA) to optimize the speed allocation of the UAV swarm’s online control strategy with information consensus estimation. Compared with a case without the designed transformation, statistically, the results demonstrate that the framework operates efficiently and robustly in phase error convergence, swarm flight distance, and fuel consumption, where a dynamic target exists.</description><subject>Algorithms</subject><subject>Guidance (motion)</subject><subject>Intelligence</subject><subject>Phase error</subject><subject>Tracking problem</subject><subject>Unmanned aerial vehicles</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz6mzH0maYylqhYIX603CZDMbU9Ns3d0q_femVPAgzmUG3o-Bh7FrARMh8vwWilRrASC1kEopoU7YSIIWiQKZnrLRQU8OhnN2EcIahkkzNWKvc9d1WDmPsf0kHuJwULPnngKhN2_cWR7RNxT5IJn3tm94hYFq7nreY9x57HjbR-q6tqHeEK_2fDV74eEL_eaSnVnsAl397DFb3d89zxfJ8unhcT5bJkZmOiZFpkhpM7UWiaQhSAHrFMkUVVbbYlrVFWiyU6FBZGBMnpMRCBJz0CrPjRqzm2Pv1ruPHYVYrt3O98PLUoEemKSgssElji7jXQiebLn17Qb9vhRQHiiWfygOmckxE7Ch39b_A98zuHJ_</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Yin, Shi</creator><creator>Wang, Xiaofang</creator><creator>Luo, Lianyong</creator><creator>Pan, Nan</creator><creator>Zhao, Da</creator><creator>Zhang, Xiayang</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6634-1711</orcidid></search><sort><creationdate>202405</creationdate><title>Collaborative strategy research of target tracking based on natural intelligence by UAV swarm</title><author>Yin, Shi ; Wang, Xiaofang ; Luo, Lianyong ; Pan, Nan ; Zhao, Da ; Zhang, Xiayang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-963e34c8ffaee2ce050ad5aec9b6df98bdb04ef8140160cc77ec1a02a704377c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Guidance (motion)</topic><topic>Intelligence</topic><topic>Phase error</topic><topic>Tracking problem</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Shi</creatorcontrib><creatorcontrib>Wang, Xiaofang</creatorcontrib><creatorcontrib>Luo, Lianyong</creatorcontrib><creatorcontrib>Pan, Nan</creatorcontrib><creatorcontrib>Zhao, Da</creatorcontrib><creatorcontrib>Zhang, Xiayang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Shi</au><au>Wang, Xiaofang</au><au>Luo, Lianyong</au><au>Pan, Nan</au><au>Zhao, Da</au><au>Zhang, Xiayang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative strategy research of target tracking based on natural intelligence by UAV swarm</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2024-05</date><risdate>2024</risdate><volume>238</volume><issue>6</issue><spage>549</spage><epage>564</epage><pages>549-564</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Regarding the regional area target collaborative tracking problem widely existing in intelligent scenarios, this paper built a distributed UAV swarm framework inspired by natural intelligence to heighten intricate missions’ efficiency. Also, a standoff collaboratively continuous tracking strategy was proposed based on a lateral guidance law with an improved Reference Point Guidance (RPG) and a longitudinal guidance law with an improved phase collaboration. Under an uncertain environment, this framework used an improved bat algorithm (IBA) to optimize the speed allocation of the UAV swarm’s online control strategy with information consensus estimation. Compared with a case without the designed transformation, statistically, the results demonstrate that the framework operates efficiently and robustly in phase error convergence, swarm flight distance, and fuel consumption, where a dynamic target exists.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544100241233313</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6634-1711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2024-05, Vol.238 (6), p.549-564
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_journals_3042415036
source IMechE Titles Via Sage
subjects Algorithms
Guidance (motion)
Intelligence
Phase error
Tracking problem
Unmanned aerial vehicles
title Collaborative strategy research of target tracking based on natural intelligence by UAV swarm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20strategy%20research%20of%20target%20tracking%20based%20on%20natural%20intelligence%20by%20UAV%20swarm&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Yin,%20Shi&rft.date=2024-05&rft.volume=238&rft.issue=6&rft.spage=549&rft.epage=564&rft.pages=549-564&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/09544100241233313&rft_dat=%3Cproquest_cross%3E3042415036%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-963e34c8ffaee2ce050ad5aec9b6df98bdb04ef8140160cc77ec1a02a704377c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3042415036&rft_id=info:pmid/&rft_sage_id=10.1177_09544100241233313&rfr_iscdi=true