Loading…
Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries
Graphite is considered the most promising anode for low-cost potassium-ion batteries (PIBs). However, the large volume change and sluggish kinetics due to the large ionic size of K + cause inferior rate capability and poor cycling stability for the graphite anode. Herein, we report highly crystallin...
Saved in:
Published in: | New journal of chemistry 2024-04, Vol.48 (16), p.7497-752 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c240t-ac1d79f5af73aa71ce0d22cb1e1a659df2290158ceeac6b7f88c0e18297ea1663 |
container_end_page | 752 |
container_issue | 16 |
container_start_page | 7497 |
container_title | New journal of chemistry |
container_volume | 48 |
creator | Sun, Kaixuan Chang, Kun Tan, Jinshuo Sun, Chuan-Fu Liu, Qin |
description | Graphite is considered the most promising anode for low-cost potassium-ion batteries (PIBs). However, the large volume change and sluggish kinetics due to the large ionic size of K
+
cause inferior rate capability and poor cycling stability for the graphite anode. Herein, we report highly crystalline graphite nanofibers (GNFs) as an anode material for PIBs, which deliver flat voltage plateaus with a high specific capacity of 257 mA h g
−1
. The highly graphitized, fiber-shaped nanostructure not only mitigates the volume expansion caused by K
+
-intercalation but also facilitates both ionic diffusion and electron transfer. GNFs achieve a long cycle life of 1 year with 99% capacity retention and fast K
+
-intercalation kinetics. Moreover, the low-defect structure of GNFs ensures a high initial coulombic efficiency of up to 74.23%. A potassium-ion full-cell prototype featuring GNFs anode and Prussian blue analogue cathode demonstrates a high energy efficiency of up to 90.6%. This low-defect graphitic nanofiber may offer insights into the design of carbon-based anodes for PIBs.
Graphite nanofibres with high crystallinity and low defect levels for potassium-ion batteries with high initial Coulombic efficiency and long cycling stability are reported in this study. |
doi_str_mv | 10.1039/d4nj00662c |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_3042986639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3042986639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-ac1d79f5af73aa71ce0d22cb1e1a659df2290158ceeac6b7f88c0e18297ea1663</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouH5cvAsFb0I1k7Zpc5T1Y5VFL3ou03Sym2U3qUn3sP_e6IrCC_MenpmBh7EL4DfAC3Xbl27FuZRCH7AJFFLlSkg4TB3KMudVKY_ZSYyJAaglTFg7s4vlepfpsIsjrtfWUbYIOCztSJlD543tKMQMU1yK7ykzPmTLtJYPFFLfoNOUDX7EGO12k1vvsg7HkYKleMaODK4jnf_OU_bx-PA-neXzt6fn6d0816LkY44a-lqZCk1dINagifdC6A4IUFaqN0IoDlWjiVDLrjZNozlBI1RNCFIWp-xqf3cI_nNLcWxXfhtcetkWvBSqSYxK1PWe0sHHGMi0Q7AbDLsWePstsL0vX19-BE4TfLmHQ9R_3L_g4gteXG7P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3042986639</pqid></control><display><type>article</type><title>Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries</title><source>Royal Society of Chemistry</source><creator>Sun, Kaixuan ; Chang, Kun ; Tan, Jinshuo ; Sun, Chuan-Fu ; Liu, Qin</creator><creatorcontrib>Sun, Kaixuan ; Chang, Kun ; Tan, Jinshuo ; Sun, Chuan-Fu ; Liu, Qin</creatorcontrib><description>Graphite is considered the most promising anode for low-cost potassium-ion batteries (PIBs). However, the large volume change and sluggish kinetics due to the large ionic size of K
+
cause inferior rate capability and poor cycling stability for the graphite anode. Herein, we report highly crystalline graphite nanofibers (GNFs) as an anode material for PIBs, which deliver flat voltage plateaus with a high specific capacity of 257 mA h g
−1
. The highly graphitized, fiber-shaped nanostructure not only mitigates the volume expansion caused by K
+
-intercalation but also facilitates both ionic diffusion and electron transfer. GNFs achieve a long cycle life of 1 year with 99% capacity retention and fast K
+
-intercalation kinetics. Moreover, the low-defect structure of GNFs ensures a high initial coulombic efficiency of up to 74.23%. A potassium-ion full-cell prototype featuring GNFs anode and Prussian blue analogue cathode demonstrates a high energy efficiency of up to 90.6%. This low-defect graphitic nanofiber may offer insights into the design of carbon-based anodes for PIBs.
Graphite nanofibres with high crystallinity and low defect levels for potassium-ion batteries with high initial Coulombic efficiency and long cycling stability are reported in this study.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d4nj00662c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Crystal defects ; Design defects ; Electrode materials ; Electron transfer ; Graphite ; Graphitization ; Intercalation ; Ion diffusion ; Kinetics ; Nanofibers ; Pigments ; Potassium ; Rechargeable batteries</subject><ispartof>New journal of chemistry, 2024-04, Vol.48 (16), p.7497-752</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-ac1d79f5af73aa71ce0d22cb1e1a659df2290158ceeac6b7f88c0e18297ea1663</cites><orcidid>0009-0005-7869-6823 ; 0000-0003-3311-5982 ; 0009-0000-2658-134X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Kaixuan</creatorcontrib><creatorcontrib>Chang, Kun</creatorcontrib><creatorcontrib>Tan, Jinshuo</creatorcontrib><creatorcontrib>Sun, Chuan-Fu</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><title>Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries</title><title>New journal of chemistry</title><description>Graphite is considered the most promising anode for low-cost potassium-ion batteries (PIBs). However, the large volume change and sluggish kinetics due to the large ionic size of K
+
cause inferior rate capability and poor cycling stability for the graphite anode. Herein, we report highly crystalline graphite nanofibers (GNFs) as an anode material for PIBs, which deliver flat voltage plateaus with a high specific capacity of 257 mA h g
−1
. The highly graphitized, fiber-shaped nanostructure not only mitigates the volume expansion caused by K
+
-intercalation but also facilitates both ionic diffusion and electron transfer. GNFs achieve a long cycle life of 1 year with 99% capacity retention and fast K
+
-intercalation kinetics. Moreover, the low-defect structure of GNFs ensures a high initial coulombic efficiency of up to 74.23%. A potassium-ion full-cell prototype featuring GNFs anode and Prussian blue analogue cathode demonstrates a high energy efficiency of up to 90.6%. This low-defect graphitic nanofiber may offer insights into the design of carbon-based anodes for PIBs.
Graphite nanofibres with high crystallinity and low defect levels for potassium-ion batteries with high initial Coulombic efficiency and long cycling stability are reported in this study.</description><subject>Anodes</subject><subject>Crystal defects</subject><subject>Design defects</subject><subject>Electrode materials</subject><subject>Electron transfer</subject><subject>Graphite</subject><subject>Graphitization</subject><subject>Intercalation</subject><subject>Ion diffusion</subject><subject>Kinetics</subject><subject>Nanofibers</subject><subject>Pigments</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouH5cvAsFb0I1k7Zpc5T1Y5VFL3ou03Sym2U3qUn3sP_e6IrCC_MenpmBh7EL4DfAC3Xbl27FuZRCH7AJFFLlSkg4TB3KMudVKY_ZSYyJAaglTFg7s4vlepfpsIsjrtfWUbYIOCztSJlD543tKMQMU1yK7ykzPmTLtJYPFFLfoNOUDX7EGO12k1vvsg7HkYKleMaODK4jnf_OU_bx-PA-neXzt6fn6d0816LkY44a-lqZCk1dINagifdC6A4IUFaqN0IoDlWjiVDLrjZNozlBI1RNCFIWp-xqf3cI_nNLcWxXfhtcetkWvBSqSYxK1PWe0sHHGMi0Q7AbDLsWePstsL0vX19-BE4TfLmHQ9R_3L_g4gteXG7P</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Sun, Kaixuan</creator><creator>Chang, Kun</creator><creator>Tan, Jinshuo</creator><creator>Sun, Chuan-Fu</creator><creator>Liu, Qin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0009-0005-7869-6823</orcidid><orcidid>https://orcid.org/0000-0003-3311-5982</orcidid><orcidid>https://orcid.org/0009-0000-2658-134X</orcidid></search><sort><creationdate>20240422</creationdate><title>Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries</title><author>Sun, Kaixuan ; Chang, Kun ; Tan, Jinshuo ; Sun, Chuan-Fu ; Liu, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-ac1d79f5af73aa71ce0d22cb1e1a659df2290158ceeac6b7f88c0e18297ea1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Crystal defects</topic><topic>Design defects</topic><topic>Electrode materials</topic><topic>Electron transfer</topic><topic>Graphite</topic><topic>Graphitization</topic><topic>Intercalation</topic><topic>Ion diffusion</topic><topic>Kinetics</topic><topic>Nanofibers</topic><topic>Pigments</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kaixuan</creatorcontrib><creatorcontrib>Chang, Kun</creatorcontrib><creatorcontrib>Tan, Jinshuo</creatorcontrib><creatorcontrib>Sun, Chuan-Fu</creatorcontrib><creatorcontrib>Liu, Qin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kaixuan</au><au>Chang, Kun</au><au>Tan, Jinshuo</au><au>Sun, Chuan-Fu</au><au>Liu, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries</atitle><jtitle>New journal of chemistry</jtitle><date>2024-04-22</date><risdate>2024</risdate><volume>48</volume><issue>16</issue><spage>7497</spage><epage>752</epage><pages>7497-752</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Graphite is considered the most promising anode for low-cost potassium-ion batteries (PIBs). However, the large volume change and sluggish kinetics due to the large ionic size of K
+
cause inferior rate capability and poor cycling stability for the graphite anode. Herein, we report highly crystalline graphite nanofibers (GNFs) as an anode material for PIBs, which deliver flat voltage plateaus with a high specific capacity of 257 mA h g
−1
. The highly graphitized, fiber-shaped nanostructure not only mitigates the volume expansion caused by K
+
-intercalation but also facilitates both ionic diffusion and electron transfer. GNFs achieve a long cycle life of 1 year with 99% capacity retention and fast K
+
-intercalation kinetics. Moreover, the low-defect structure of GNFs ensures a high initial coulombic efficiency of up to 74.23%. A potassium-ion full-cell prototype featuring GNFs anode and Prussian blue analogue cathode demonstrates a high energy efficiency of up to 90.6%. This low-defect graphitic nanofiber may offer insights into the design of carbon-based anodes for PIBs.
Graphite nanofibres with high crystallinity and low defect levels for potassium-ion batteries with high initial Coulombic efficiency and long cycling stability are reported in this study.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4nj00662c</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0005-7869-6823</orcidid><orcidid>https://orcid.org/0000-0003-3311-5982</orcidid><orcidid>https://orcid.org/0009-0000-2658-134X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2024-04, Vol.48 (16), p.7497-752 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_proquest_journals_3042986639 |
source | Royal Society of Chemistry |
subjects | Anodes Crystal defects Design defects Electrode materials Electron transfer Graphite Graphitization Intercalation Ion diffusion Kinetics Nanofibers Pigments Potassium Rechargeable batteries |
title | Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20crystalline%20graphite%20nanofibers%20as%20an%20anode%20for%20high-performance%20potassium-ion%20batteries&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Sun,%20Kaixuan&rft.date=2024-04-22&rft.volume=48&rft.issue=16&rft.spage=7497&rft.epage=752&rft.pages=7497-752&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d4nj00662c&rft_dat=%3Cproquest_rsc_p%3E3042986639%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-ac1d79f5af73aa71ce0d22cb1e1a659df2290158ceeac6b7f88c0e18297ea1663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3042986639&rft_id=info:pmid/&rfr_iscdi=true |