Loading…

Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum

Orbital angular momentums (OAMs) greatly enhance the channel capacity in free-space optical communication. However, demodulation of superposed OAM to recognize them separately is always difficult, especially upon multiplexing more OAMs. In this work, we report a directly recognition of multiplexed f...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of physics 2024-10, Vol.19 (5), p.52202, Article 52202
Main Authors: Zhou, Jingwen, Yin, Yaling, Tang, Jihong, Xia, Yong, Yin, Jianping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orbital angular momentums (OAMs) greatly enhance the channel capacity in free-space optical communication. However, demodulation of superposed OAM to recognize them separately is always difficult, especially upon multiplexing more OAMs. In this work, we report a directly recognition of multiplexed fractional OAM modes, without separating them, at a resolution of 0.1 with high accuracy, using a multi-task deep learning (MTDL) model, which has not been reported before. Namely, two-mode, four-mode, and eight-mode superposed OAM beams, experimentally generated with a hologram carrying both phase and amplitude information, are well recognized by the suitable MTDL model. Two applications in information transmission are presented: the first is for 256-ary OAM shift keying via multiplexed fractional OAMs; the second is for OAM division multiplexed information transmission in an eightfold speed. The encouraging results will expand the capacity in future free-space optical communication.
ISSN:2095-0462
2095-0470
DOI:10.1007/s11467-024-1402-y