Loading…
Secondary flows in the actuator-disk simulation of wind-turbine wakes
This study explores the generation of secondary flows of Prandtl's second kind in the actuator-disk simulation of wind-turbine wakes. Leveraging large-eddy simulation data and conducting an analysis of the mean streamwise vorticity budget, we uncover the physical mechanisms contributing to this...
Saved in:
Published in: | Physics of fluids (1994) 2024-04, Vol.36 (4) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-71e6e489fec34c04de9363ade341c20e48fa8d9a146d8819502377faafa5c7d83 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Zehtabiyan-Rezaie, Navid Amarloo, Ali Abkar, Mahdi |
description | This study explores the generation of secondary flows of Prandtl's second kind in the actuator-disk simulation of wind-turbine wakes. Leveraging large-eddy simulation data and conducting an analysis of the mean streamwise vorticity budget, we uncover the physical mechanisms contributing to this phenomenon. Our investigations attribute the emergence of such flows to the spatial gradients of the Reynolds stresses in the wake downstream of the turbines, which are, in turn, influenced by ground effects. To further investigate the phenomenon, we specifically isolate the impact of secondary flows on the wake by employing a model recognized for its incapacity to capture such dynamics: a two-equation Reynolds-averaged Navier–Stokes (RANS) model founded on the linear eddy-viscosity hypothesis. By comparing the predictions of the RANS model with those of large-eddy simulations and wind-tunnel experiments, we highlight the effect of secondary flows on the wake structure and, in particular, the upward shift of the wake. Motivated by the obtained results, we then enhance the baseline RANS model by introducing a non-linear term within the Reynolds stress tensor. This modification leads to a more accurate representation of Reynolds stresses, enabling the RANS model to capture the secondary flows in the wake. Our analysis emphasizes the importance of employing advanced RANS models in the simulation of wind farms. |
doi_str_mv | 10.1063/5.0203068 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3043994645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3043994645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-71e6e489fec34c04de9363ade341c20e48fa8d9a146d8819502377faafa5c7d83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlULqzSSTSZZS6gMKLtT1EPPA9DGpSYbBf-_Udu3qHrgf53AOQtcUZhQEu69nUAEDIU_QhIJUpBFCnO51A0QIRs_RRc4rAGCqEhO0eHMmdlanH-w3ccg4dLh8OaxN6XWJidiQ1ziHbb_RJcQOR4-H0FlS-vQZOocHvXb5Ep15vcnu6nin6ONx8T5_JsvXp5f5w5KYSjaFNNQJx6XyzjBugFunmGDaOsapqWB8eS2t0pQLKyVVNVSsabzWXtemsZJN0c3Bd5fid-9yaVexT90Y2TLgTCkueD1StwfKpJhzcr7dpbAdK7YU2v1Kbd0eVxrZuwObTSh_Df-BfwFz5GZ_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043994645</pqid></control><display><type>article</type><title>Secondary flows in the actuator-disk simulation of wind-turbine wakes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Zehtabiyan-Rezaie, Navid ; Amarloo, Ali ; Abkar, Mahdi</creator><creatorcontrib>Zehtabiyan-Rezaie, Navid ; Amarloo, Ali ; Abkar, Mahdi</creatorcontrib><description>This study explores the generation of secondary flows of Prandtl's second kind in the actuator-disk simulation of wind-turbine wakes. Leveraging large-eddy simulation data and conducting an analysis of the mean streamwise vorticity budget, we uncover the physical mechanisms contributing to this phenomenon. Our investigations attribute the emergence of such flows to the spatial gradients of the Reynolds stresses in the wake downstream of the turbines, which are, in turn, influenced by ground effects. To further investigate the phenomenon, we specifically isolate the impact of secondary flows on the wake by employing a model recognized for its incapacity to capture such dynamics: a two-equation Reynolds-averaged Navier–Stokes (RANS) model founded on the linear eddy-viscosity hypothesis. By comparing the predictions of the RANS model with those of large-eddy simulations and wind-tunnel experiments, we highlight the effect of secondary flows on the wake structure and, in particular, the upward shift of the wake. Motivated by the obtained results, we then enhance the baseline RANS model by introducing a non-linear term within the Reynolds stress tensor. This modification leads to a more accurate representation of Reynolds stresses, enabling the RANS model to capture the secondary flows in the wake. Our analysis emphasizes the importance of employing advanced RANS models in the simulation of wind farms.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0203068</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Large eddy simulation ; Reynolds averaged Navier-Stokes method ; Reynolds stress ; Secondary flow ; Simulation ; Tensors ; Vortices ; Vorticity ; Wind power ; Wind tunnel testing ; Wind tunnels ; Wind turbines</subject><ispartof>Physics of fluids (1994), 2024-04, Vol.36 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-71e6e489fec34c04de9363ade341c20e48fa8d9a146d8819502377faafa5c7d83</cites><orcidid>0000-0001-8677-7723 ; 0000-0002-6220-870X ; 0000-0003-1189-0507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1558,27922,27923</link.rule.ids></links><search><creatorcontrib>Zehtabiyan-Rezaie, Navid</creatorcontrib><creatorcontrib>Amarloo, Ali</creatorcontrib><creatorcontrib>Abkar, Mahdi</creatorcontrib><title>Secondary flows in the actuator-disk simulation of wind-turbine wakes</title><title>Physics of fluids (1994)</title><description>This study explores the generation of secondary flows of Prandtl's second kind in the actuator-disk simulation of wind-turbine wakes. Leveraging large-eddy simulation data and conducting an analysis of the mean streamwise vorticity budget, we uncover the physical mechanisms contributing to this phenomenon. Our investigations attribute the emergence of such flows to the spatial gradients of the Reynolds stresses in the wake downstream of the turbines, which are, in turn, influenced by ground effects. To further investigate the phenomenon, we specifically isolate the impact of secondary flows on the wake by employing a model recognized for its incapacity to capture such dynamics: a two-equation Reynolds-averaged Navier–Stokes (RANS) model founded on the linear eddy-viscosity hypothesis. By comparing the predictions of the RANS model with those of large-eddy simulations and wind-tunnel experiments, we highlight the effect of secondary flows on the wake structure and, in particular, the upward shift of the wake. Motivated by the obtained results, we then enhance the baseline RANS model by introducing a non-linear term within the Reynolds stress tensor. This modification leads to a more accurate representation of Reynolds stresses, enabling the RANS model to capture the secondary flows in the wake. Our analysis emphasizes the importance of employing advanced RANS models in the simulation of wind farms.</description><subject>Actuators</subject><subject>Large eddy simulation</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Reynolds stress</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Tensors</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Wind power</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><subject>Wind turbines</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlULqzSSTSZZS6gMKLtT1EPPA9DGpSYbBf-_Udu3qHrgf53AOQtcUZhQEu69nUAEDIU_QhIJUpBFCnO51A0QIRs_RRc4rAGCqEhO0eHMmdlanH-w3ccg4dLh8OaxN6XWJidiQ1ziHbb_RJcQOR4-H0FlS-vQZOocHvXb5Ep15vcnu6nin6ONx8T5_JsvXp5f5w5KYSjaFNNQJx6XyzjBugFunmGDaOsapqWB8eS2t0pQLKyVVNVSsabzWXtemsZJN0c3Bd5fid-9yaVexT90Y2TLgTCkueD1StwfKpJhzcr7dpbAdK7YU2v1Kbd0eVxrZuwObTSh_Df-BfwFz5GZ_</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Zehtabiyan-Rezaie, Navid</creator><creator>Amarloo, Ali</creator><creator>Abkar, Mahdi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8677-7723</orcidid><orcidid>https://orcid.org/0000-0002-6220-870X</orcidid><orcidid>https://orcid.org/0000-0003-1189-0507</orcidid></search><sort><creationdate>202404</creationdate><title>Secondary flows in the actuator-disk simulation of wind-turbine wakes</title><author>Zehtabiyan-Rezaie, Navid ; Amarloo, Ali ; Abkar, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-71e6e489fec34c04de9363ade341c20e48fa8d9a146d8819502377faafa5c7d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Large eddy simulation</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Reynolds stress</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Tensors</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Wind power</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zehtabiyan-Rezaie, Navid</creatorcontrib><creatorcontrib>Amarloo, Ali</creatorcontrib><creatorcontrib>Abkar, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zehtabiyan-Rezaie, Navid</au><au>Amarloo, Ali</au><au>Abkar, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary flows in the actuator-disk simulation of wind-turbine wakes</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study explores the generation of secondary flows of Prandtl's second kind in the actuator-disk simulation of wind-turbine wakes. Leveraging large-eddy simulation data and conducting an analysis of the mean streamwise vorticity budget, we uncover the physical mechanisms contributing to this phenomenon. Our investigations attribute the emergence of such flows to the spatial gradients of the Reynolds stresses in the wake downstream of the turbines, which are, in turn, influenced by ground effects. To further investigate the phenomenon, we specifically isolate the impact of secondary flows on the wake by employing a model recognized for its incapacity to capture such dynamics: a two-equation Reynolds-averaged Navier–Stokes (RANS) model founded on the linear eddy-viscosity hypothesis. By comparing the predictions of the RANS model with those of large-eddy simulations and wind-tunnel experiments, we highlight the effect of secondary flows on the wake structure and, in particular, the upward shift of the wake. Motivated by the obtained results, we then enhance the baseline RANS model by introducing a non-linear term within the Reynolds stress tensor. This modification leads to a more accurate representation of Reynolds stresses, enabling the RANS model to capture the secondary flows in the wake. Our analysis emphasizes the importance of employing advanced RANS models in the simulation of wind farms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203068</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8677-7723</orcidid><orcidid>https://orcid.org/0000-0002-6220-870X</orcidid><orcidid>https://orcid.org/0000-0003-1189-0507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-04, Vol.36 (4) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3043994645 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Actuators Large eddy simulation Reynolds averaged Navier-Stokes method Reynolds stress Secondary flow Simulation Tensors Vortices Vorticity Wind power Wind tunnel testing Wind tunnels Wind turbines |
title | Secondary flows in the actuator-disk simulation of wind-turbine wakes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20flows%20in%20the%20actuator-disk%20simulation%20of%20wind-turbine%20wakes&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zehtabiyan-Rezaie,%20Navid&rft.date=2024-04&rft.volume=36&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0203068&rft_dat=%3Cproquest_scita%3E3043994645%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-71e6e489fec34c04de9363ade341c20e48fa8d9a146d8819502377faafa5c7d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3043994645&rft_id=info:pmid/&rfr_iscdi=true |