Loading…

Wills Aligner: Multi-Subject Collaborative Brain Visual Decoding

Decoding visual information from human brain activity has seen remarkable advancements in recent research. However, the diversity in cortical parcellation and fMRI patterns across individuals has prompted the development of deep learning models tailored to each subject. The personalization limits th...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-12
Main Authors: Bao, Guangyin, Zhang, Qi, Gong, Zixuan, Zhou, Jialei, Fan, Wei, Yi, Kun, Usman Naseem, Hu, Liang, Miao, Duoqian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bao, Guangyin
Zhang, Qi
Gong, Zixuan
Zhou, Jialei
Fan, Wei
Yi, Kun
Usman Naseem
Hu, Liang
Miao, Duoqian
description Decoding visual information from human brain activity has seen remarkable advancements in recent research. However, the diversity in cortical parcellation and fMRI patterns across individuals has prompted the development of deep learning models tailored to each subject. The personalization limits the broader applicability of brain visual decoding in real-world scenarios. To address this issue, we introduce Wills Aligner, a novel approach designed to achieve multi-subject collaborative brain visual decoding. Wills Aligner begins by aligning the fMRI data from different subjects at the anatomical level. It then employs delicate mixture-of-brain-expert adapters and a meta-learning strategy to account for individual fMRI pattern differences. Additionally, Wills Aligner leverages the semantic relation of visual stimuli to guide the learning of inter-subject commonality, enabling visual decoding for each subject to draw insights from other subjects' data. We rigorously evaluate our Wills Aligner across various visual decoding tasks, including classification, cross-modal retrieval, and image reconstruction. The experimental results demonstrate that Wills Aligner achieves promising performance.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3044062822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044062822</sourcerecordid><originalsourceid>FETCH-proquest_journals_30440628223</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_GmrcVJrYqLk6JjSWsst1wSzY_Pr4MP4HSG74xYAlIusioHmLDU-0EIAeUSikImbH1DIs83hL3RbsVPkQJm59gOugu8tkSqtU4FfGu-dQoNv6KPivhOd_aOpp-x8UOR1-mvUzY_7C_1MXs6-4rah2aw0ZkvNVLkuSihApD_XR8DpjiW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044062822</pqid></control><display><type>article</type><title>Wills Aligner: Multi-Subject Collaborative Brain Visual Decoding</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bao, Guangyin ; Zhang, Qi ; Gong, Zixuan ; Zhou, Jialei ; Fan, Wei ; Yi, Kun ; Usman Naseem ; Hu, Liang ; Miao, Duoqian</creator><creatorcontrib>Bao, Guangyin ; Zhang, Qi ; Gong, Zixuan ; Zhou, Jialei ; Fan, Wei ; Yi, Kun ; Usman Naseem ; Hu, Liang ; Miao, Duoqian</creatorcontrib><description>Decoding visual information from human brain activity has seen remarkable advancements in recent research. However, the diversity in cortical parcellation and fMRI patterns across individuals has prompted the development of deep learning models tailored to each subject. The personalization limits the broader applicability of brain visual decoding in real-world scenarios. To address this issue, we introduce Wills Aligner, a novel approach designed to achieve multi-subject collaborative brain visual decoding. Wills Aligner begins by aligning the fMRI data from different subjects at the anatomical level. It then employs delicate mixture-of-brain-expert adapters and a meta-learning strategy to account for individual fMRI pattern differences. Additionally, Wills Aligner leverages the semantic relation of visual stimuli to guide the learning of inter-subject commonality, enabling visual decoding for each subject to draw insights from other subjects' data. We rigorously evaluate our Wills Aligner across various visual decoding tasks, including classification, cross-modal retrieval, and image reconstruction. The experimental results demonstrate that Wills Aligner achieves promising performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; Cognition ; Cognition &amp; reasoning ; Cognitive tasks ; Commonality ; Learning ; Performance evaluation ; Representations ; Robustness ; Visual tasks</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3044062822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bao, Guangyin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Gong, Zixuan</creatorcontrib><creatorcontrib>Zhou, Jialei</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Yi, Kun</creatorcontrib><creatorcontrib>Usman Naseem</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Miao, Duoqian</creatorcontrib><title>Wills Aligner: Multi-Subject Collaborative Brain Visual Decoding</title><title>arXiv.org</title><description>Decoding visual information from human brain activity has seen remarkable advancements in recent research. However, the diversity in cortical parcellation and fMRI patterns across individuals has prompted the development of deep learning models tailored to each subject. The personalization limits the broader applicability of brain visual decoding in real-world scenarios. To address this issue, we introduce Wills Aligner, a novel approach designed to achieve multi-subject collaborative brain visual decoding. Wills Aligner begins by aligning the fMRI data from different subjects at the anatomical level. It then employs delicate mixture-of-brain-expert adapters and a meta-learning strategy to account for individual fMRI pattern differences. Additionally, Wills Aligner leverages the semantic relation of visual stimuli to guide the learning of inter-subject commonality, enabling visual decoding for each subject to draw insights from other subjects' data. We rigorously evaluate our Wills Aligner across various visual decoding tasks, including classification, cross-modal retrieval, and image reconstruction. The experimental results demonstrate that Wills Aligner achieves promising performance.</description><subject>Brain</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive tasks</subject><subject>Commonality</subject><subject>Learning</subject><subject>Performance evaluation</subject><subject>Representations</subject><subject>Robustness</subject><subject>Visual tasks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_GmrcVJrYqLk6JjSWsst1wSzY_Pr4MP4HSG74xYAlIusioHmLDU-0EIAeUSikImbH1DIs83hL3RbsVPkQJm59gOugu8tkSqtU4FfGu-dQoNv6KPivhOd_aOpp-x8UOR1-mvUzY_7C_1MXs6-4rah2aw0ZkvNVLkuSihApD_XR8DpjiW</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Bao, Guangyin</creator><creator>Zhang, Qi</creator><creator>Gong, Zixuan</creator><creator>Zhou, Jialei</creator><creator>Fan, Wei</creator><creator>Yi, Kun</creator><creator>Usman Naseem</creator><creator>Hu, Liang</creator><creator>Miao, Duoqian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241216</creationdate><title>Wills Aligner: Multi-Subject Collaborative Brain Visual Decoding</title><author>Bao, Guangyin ; Zhang, Qi ; Gong, Zixuan ; Zhou, Jialei ; Fan, Wei ; Yi, Kun ; Usman Naseem ; Hu, Liang ; Miao, Duoqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30440628223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive tasks</topic><topic>Commonality</topic><topic>Learning</topic><topic>Performance evaluation</topic><topic>Representations</topic><topic>Robustness</topic><topic>Visual tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Bao, Guangyin</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Gong, Zixuan</creatorcontrib><creatorcontrib>Zhou, Jialei</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Yi, Kun</creatorcontrib><creatorcontrib>Usman Naseem</creatorcontrib><creatorcontrib>Hu, Liang</creatorcontrib><creatorcontrib>Miao, Duoqian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Guangyin</au><au>Zhang, Qi</au><au>Gong, Zixuan</au><au>Zhou, Jialei</au><au>Fan, Wei</au><au>Yi, Kun</au><au>Usman Naseem</au><au>Hu, Liang</au><au>Miao, Duoqian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Wills Aligner: Multi-Subject Collaborative Brain Visual Decoding</atitle><jtitle>arXiv.org</jtitle><date>2024-12-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Decoding visual information from human brain activity has seen remarkable advancements in recent research. However, the diversity in cortical parcellation and fMRI patterns across individuals has prompted the development of deep learning models tailored to each subject. The personalization limits the broader applicability of brain visual decoding in real-world scenarios. To address this issue, we introduce Wills Aligner, a novel approach designed to achieve multi-subject collaborative brain visual decoding. Wills Aligner begins by aligning the fMRI data from different subjects at the anatomical level. It then employs delicate mixture-of-brain-expert adapters and a meta-learning strategy to account for individual fMRI pattern differences. Additionally, Wills Aligner leverages the semantic relation of visual stimuli to guide the learning of inter-subject commonality, enabling visual decoding for each subject to draw insights from other subjects' data. We rigorously evaluate our Wills Aligner across various visual decoding tasks, including classification, cross-modal retrieval, and image reconstruction. The experimental results demonstrate that Wills Aligner achieves promising performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3044062822
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Brain
Cognition
Cognition & reasoning
Cognitive tasks
Commonality
Learning
Performance evaluation
Representations
Robustness
Visual tasks
title Wills Aligner: Multi-Subject Collaborative Brain Visual Decoding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Wills%20Aligner:%20Multi-Subject%20Collaborative%20Brain%20Visual%20Decoding&rft.jtitle=arXiv.org&rft.au=Bao,%20Guangyin&rft.date=2024-12-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3044062822%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30440628223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044062822&rft_id=info:pmid/&rfr_iscdi=true