Loading…
Quasilinear Interpolation by Minimal Splines
The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the g...
Saved in:
Published in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024-05, Vol.281 (2), p.285-296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3 |
container_end_page | 296 |
container_issue | 2 |
container_start_page | 285 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 281 |
creator | Livshits, L. P. Makarov, A. A. Makarova, S. V. |
description | The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented. |
doi_str_mv | 10.1007/s10958-024-07101-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044474935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044474935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fr0aTTL56lEXXhRUR9RzSdipdaluT9rD_3qwVvHmaOTzPO8NLyCVnN5wxcxs5y5WlTEjKDGecyiOy4MoAtSZXx2lnRlAAI0_JWYw7liRtYUGuXyYfm7bp0Ids040Yhr71Y9N3WbHPnpqu-fRt9jociHhOTmrfRrz4nUvy_nD_tnqk2-f1ZnW3pSW3SlKpC29Q1wUKKAxX4FGxWvncVELVVoHSGtCqwhaIXOe18KLSvCq50R4AYUmu5twh9F8TxtHt-il06aQDJqU0MgeVKDFTZehjDFi7IaRvw95x5g6tuLkVl1pxP604mSSYpZjg7gPDX_Q_1jc6G2Ox</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044474935</pqid></control><display><type>article</type><title>Quasilinear Interpolation by Minimal Splines</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Livshits, L. P. ; Makarov, A. A. ; Makarova, S. V.</creator><creatorcontrib>Livshits, L. P. ; Makarov, A. A. ; Makarova, S. V.</creatorcontrib><description>The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07101-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Interpolation ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Spline functions</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024-05, Vol.281 (2), p.285-296</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Livshits, L. P.</creatorcontrib><creatorcontrib>Makarov, A. A.</creatorcontrib><creatorcontrib>Makarova, S. V.</creatorcontrib><title>Quasilinear Interpolation by Minimal Splines</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.</description><subject>Approximation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spline functions</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fr0aTTL56lEXXhRUR9RzSdipdaluT9rD_3qwVvHmaOTzPO8NLyCVnN5wxcxs5y5WlTEjKDGecyiOy4MoAtSZXx2lnRlAAI0_JWYw7liRtYUGuXyYfm7bp0Ids040Yhr71Y9N3WbHPnpqu-fRt9jociHhOTmrfRrz4nUvy_nD_tnqk2-f1ZnW3pSW3SlKpC29Q1wUKKAxX4FGxWvncVELVVoHSGtCqwhaIXOe18KLSvCq50R4AYUmu5twh9F8TxtHt-il06aQDJqU0MgeVKDFTZehjDFi7IaRvw95x5g6tuLkVl1pxP604mSSYpZjg7gPDX_Q_1jc6G2Ox</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Livshits, L. P.</creator><creator>Makarov, A. A.</creator><creator>Makarova, S. V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Quasilinear Interpolation by Minimal Splines</title><author>Livshits, L. P. ; Makarov, A. A. ; Makarova, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livshits, L. P.</creatorcontrib><creatorcontrib>Makarov, A. A.</creatorcontrib><creatorcontrib>Makarova, S. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livshits, L. P.</au><au>Makarov, A. A.</au><au>Makarova, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasilinear Interpolation by Minimal Splines</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>281</volume><issue>2</issue><spage>285</spage><epage>296</epage><pages>285-296</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07101-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2024-05, Vol.281 (2), p.285-296 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_3044474935 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Approximation Interpolation Mathematical analysis Mathematics Mathematics and Statistics Spline functions |
title | Quasilinear Interpolation by Minimal Splines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasilinear%20Interpolation%20by%20Minimal%20Splines&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Livshits,%20L.%20P.&rft.date=2024-05-01&rft.volume=281&rft.issue=2&rft.spage=285&rft.epage=296&rft.pages=285-296&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07101-4&rft_dat=%3Cproquest_cross%3E3044474935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044474935&rft_id=info:pmid/&rfr_iscdi=true |