Loading…

Quasilinear Interpolation by Minimal Splines

The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024-05, Vol.281 (2), p.285-296
Main Authors: Livshits, L. P., Makarov, A. A., Makarova, S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3
container_end_page 296
container_issue 2
container_start_page 285
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 281
creator Livshits, L. P.
Makarov, A. A.
Makarova, S. V.
description The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.
doi_str_mv 10.1007/s10958-024-07101-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044474935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044474935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fr0aTTL56lEXXhRUR9RzSdipdaluT9rD_3qwVvHmaOTzPO8NLyCVnN5wxcxs5y5WlTEjKDGecyiOy4MoAtSZXx2lnRlAAI0_JWYw7liRtYUGuXyYfm7bp0Ids040Yhr71Y9N3WbHPnpqu-fRt9jociHhOTmrfRrz4nUvy_nD_tnqk2-f1ZnW3pSW3SlKpC29Q1wUKKAxX4FGxWvncVELVVoHSGtCqwhaIXOe18KLSvCq50R4AYUmu5twh9F8TxtHt-il06aQDJqU0MgeVKDFTZehjDFi7IaRvw95x5g6tuLkVl1pxP604mSSYpZjg7gPDX_Q_1jc6G2Ox</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044474935</pqid></control><display><type>article</type><title>Quasilinear Interpolation by Minimal Splines</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Livshits, L. P. ; Makarov, A. A. ; Makarova, S. V.</creator><creatorcontrib>Livshits, L. P. ; Makarov, A. A. ; Makarova, S. V.</creatorcontrib><description>The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07101-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Approximation ; Interpolation ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Spline functions</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024-05, Vol.281 (2), p.285-296</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Livshits, L. P.</creatorcontrib><creatorcontrib>Makarov, A. A.</creatorcontrib><creatorcontrib>Makarova, S. V.</creatorcontrib><title>Quasilinear Interpolation by Minimal Splines</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.</description><subject>Approximation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spline functions</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fr0aTTL56lEXXhRUR9RzSdipdaluT9rD_3qwVvHmaOTzPO8NLyCVnN5wxcxs5y5WlTEjKDGecyiOy4MoAtSZXx2lnRlAAI0_JWYw7liRtYUGuXyYfm7bp0Ids040Yhr71Y9N3WbHPnpqu-fRt9jociHhOTmrfRrz4nUvy_nD_tnqk2-f1ZnW3pSW3SlKpC29Q1wUKKAxX4FGxWvncVELVVoHSGtCqwhaIXOe18KLSvCq50R4AYUmu5twh9F8TxtHt-il06aQDJqU0MgeVKDFTZehjDFi7IaRvw95x5g6tuLkVl1pxP604mSSYpZjg7gPDX_Q_1jc6G2Ox</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Livshits, L. P.</creator><creator>Makarov, A. A.</creator><creator>Makarova, S. V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240501</creationdate><title>Quasilinear Interpolation by Minimal Splines</title><author>Livshits, L. P. ; Makarov, A. A. ; Makarova, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livshits, L. P.</creatorcontrib><creatorcontrib>Makarov, A. A.</creatorcontrib><creatorcontrib>Makarova, S. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livshits, L. P.</au><au>Makarov, A. A.</au><au>Makarova, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasilinear Interpolation by Minimal Splines</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>281</volume><issue>2</issue><spage>285</spage><epage>296</epage><pages>285-296</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The paper studies quasilinear interpolation by minimal splines constructed on nonuniform grids with multiple nodes. Asymptotic representations for normalized splines are obtained. The sharpness of biorthogonal approximation and the order of accuracy of quasilinear interpolation with respect to the grid stepsize are established. Results of numerical experiments on approximating some test functions, which demonstrate the effect of choosing a generating vector function in constructing the corresponding minimal spline, are presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07101-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2024-05, Vol.281 (2), p.285-296
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_3044474935
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Approximation
Interpolation
Mathematical analysis
Mathematics
Mathematics and Statistics
Spline functions
title Quasilinear Interpolation by Minimal Splines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasilinear%20Interpolation%20by%20Minimal%20Splines&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Livshits,%20L.%20P.&rft.date=2024-05-01&rft.volume=281&rft.issue=2&rft.spage=285&rft.epage=296&rft.pages=285-296&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07101-4&rft_dat=%3Cproquest_cross%3E3044474935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1854-46ba7e6fbe23b7153ae50f5a97d25f8535663e85b8bee169f2a2d61dc176a33e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044474935&rft_id=info:pmid/&rfr_iscdi=true