Loading…
On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics
The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studi...
Saved in:
Published in: | Mathematical models and computer simulations 2024-04, Vol.16 (2), p.302-309 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33 |
container_end_page | 309 |
container_issue | 2 |
container_start_page | 302 |
container_title | Mathematical models and computer simulations |
container_volume | 16 |
creator | Markov, M. B. Kosarev, O. S. Parot’kin, S. V. Tarakanov, I. A. |
description | The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons. |
doi_str_mv | 10.1134/S2070048224020108 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044476850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044476850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEElXpB7CzxDowfrR2l1BKqSjqorCOHMcBV4ld7ASpfAWfjEN4LBCzmavRPXdGkySnGM4xpuxiQ4ADMEEIAwIYxEEy6EYpsCkc_mhBjpNRCFuIRQkXVAyS97VFzbNGM2dD41vVGGeRK5FECxnS672VtVHo3hW66sbzSqvGGyWrjig6_6tp9p-ERUtnzZsuOhRdyRBVDJNo0-60V67etY32aGPqtpLfe_rAqO-M1Y1R4SQ5KmUV9OirD5PHm_nD7DZdrRfL2eUqVTgennJKgCkGKpdlXvCc5-Ukn0COSwJRjCeklBoEBioKSrRilJRQTLngUw6yoHSYnPW5O-9eWh2abOtab-PKjAJjjE_EGKIL9y7lXQhel9nOm1r6fYYh636f_fl9ZEjPhOi1T9r_Jv8PfQAZ1YWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044476850</pqid></control><display><type>article</type><title>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</title><source>Springer Link</source><creator>Markov, M. B. ; Kosarev, O. S. ; Parot’kin, S. V. ; Tarakanov, I. A.</creator><creatorcontrib>Markov, M. B. ; Kosarev, O. S. ; Parot’kin, S. V. ; Tarakanov, I. A.</creatorcontrib><description>The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048224020108</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Distribution functions ; Dynamic models ; Electrical resistivity ; Electron drift velocity ; Electrons ; Kinetic equations ; Kinetics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Simulation and Modeling ; Specific energy</subject><ispartof>Mathematical models and computer simulations, 2024-04, Vol.16 (2), p.302-309</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2024, Vol. 16, No. 2, pp. 302–309. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 12, pp. 101–112.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Markov, M. B.</creatorcontrib><creatorcontrib>Kosarev, O. S.</creatorcontrib><creatorcontrib>Parot’kin, S. V.</creatorcontrib><creatorcontrib>Tarakanov, I. A.</creatorcontrib><title>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.</description><subject>Distribution functions</subject><subject>Dynamic models</subject><subject>Electrical resistivity</subject><subject>Electron drift velocity</subject><subject>Electrons</subject><subject>Kinetic equations</subject><subject>Kinetics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Simulation and Modeling</subject><subject>Specific energy</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEElXpB7CzxDowfrR2l1BKqSjqorCOHMcBV4ld7ASpfAWfjEN4LBCzmavRPXdGkySnGM4xpuxiQ4ADMEEIAwIYxEEy6EYpsCkc_mhBjpNRCFuIRQkXVAyS97VFzbNGM2dD41vVGGeRK5FECxnS672VtVHo3hW66sbzSqvGGyWrjig6_6tp9p-ERUtnzZsuOhRdyRBVDJNo0-60V67etY32aGPqtpLfe_rAqO-M1Y1R4SQ5KmUV9OirD5PHm_nD7DZdrRfL2eUqVTgennJKgCkGKpdlXvCc5-Ukn0COSwJRjCeklBoEBioKSrRilJRQTLngUw6yoHSYnPW5O-9eWh2abOtab-PKjAJjjE_EGKIL9y7lXQhel9nOm1r6fYYh636f_fl9ZEjPhOi1T9r_Jv8PfQAZ1YWk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Markov, M. B.</creator><creator>Kosarev, O. S.</creator><creator>Parot’kin, S. V.</creator><creator>Tarakanov, I. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</title><author>Markov, M. B. ; Kosarev, O. S. ; Parot’kin, S. V. ; Tarakanov, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distribution functions</topic><topic>Dynamic models</topic><topic>Electrical resistivity</topic><topic>Electron drift velocity</topic><topic>Electrons</topic><topic>Kinetic equations</topic><topic>Kinetics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Simulation and Modeling</topic><topic>Specific energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markov, M. B.</creatorcontrib><creatorcontrib>Kosarev, O. S.</creatorcontrib><creatorcontrib>Parot’kin, S. V.</creatorcontrib><creatorcontrib>Tarakanov, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markov, M. B.</au><au>Kosarev, O. S.</au><au>Parot’kin, S. V.</au><au>Tarakanov, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>302</spage><epage>309</epage><pages>302-309</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048224020108</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0482 |
ispartof | Mathematical models and computer simulations, 2024-04, Vol.16 (2), p.302-309 |
issn | 2070-0482 2070-0490 |
language | eng |
recordid | cdi_proquest_journals_3044476850 |
source | Springer Link |
subjects | Distribution functions Dynamic models Electrical resistivity Electron drift velocity Electrons Kinetic equations Kinetics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Simulation and Modeling Specific energy |
title | On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20a%20Gas-Dynamic%20Model%20of%20Electrical%20Conductivity%20of%20an%20Ionized%20Gas%20Based%20on%20a%20Supercomputer%20Simulation%20of%20Electron%20Kinetics&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Markov,%20M.%20B.&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=302&rft.epage=309&rft.pages=302-309&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048224020108&rft_dat=%3Cproquest_cross%3E3044476850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044476850&rft_id=info:pmid/&rfr_iscdi=true |