Loading…

On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics

The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical models and computer simulations 2024-04, Vol.16 (2), p.302-309
Main Authors: Markov, M. B., Kosarev, O. S., Parot’kin, S. V., Tarakanov, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33
container_end_page 309
container_issue 2
container_start_page 302
container_title Mathematical models and computer simulations
container_volume 16
creator Markov, M. B.
Kosarev, O. S.
Parot’kin, S. V.
Tarakanov, I. A.
description The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.
doi_str_mv 10.1134/S2070048224020108
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3044476850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044476850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEElXpB7CzxDowfrR2l1BKqSjqorCOHMcBV4ld7ASpfAWfjEN4LBCzmavRPXdGkySnGM4xpuxiQ4ADMEEIAwIYxEEy6EYpsCkc_mhBjpNRCFuIRQkXVAyS97VFzbNGM2dD41vVGGeRK5FECxnS672VtVHo3hW66sbzSqvGGyWrjig6_6tp9p-ERUtnzZsuOhRdyRBVDJNo0-60V67etY32aGPqtpLfe_rAqO-M1Y1R4SQ5KmUV9OirD5PHm_nD7DZdrRfL2eUqVTgennJKgCkGKpdlXvCc5-Ukn0COSwJRjCeklBoEBioKSrRilJRQTLngUw6yoHSYnPW5O-9eWh2abOtab-PKjAJjjE_EGKIL9y7lXQhel9nOm1r6fYYh636f_fl9ZEjPhOi1T9r_Jv8PfQAZ1YWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044476850</pqid></control><display><type>article</type><title>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</title><source>Springer Link</source><creator>Markov, M. B. ; Kosarev, O. S. ; Parot’kin, S. V. ; Tarakanov, I. A.</creator><creatorcontrib>Markov, M. B. ; Kosarev, O. S. ; Parot’kin, S. V. ; Tarakanov, I. A.</creatorcontrib><description>The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048224020108</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Distribution functions ; Dynamic models ; Electrical resistivity ; Electron drift velocity ; Electrons ; Kinetic equations ; Kinetics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Simulation and Modeling ; Specific energy</subject><ispartof>Mathematical models and computer simulations, 2024-04, Vol.16 (2), p.302-309</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2024, Vol. 16, No. 2, pp. 302–309. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2023, published in Matematicheskoe Modelirovanie, 2023, Vol. 35, No. 12, pp. 101–112.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Markov, M. B.</creatorcontrib><creatorcontrib>Kosarev, O. S.</creatorcontrib><creatorcontrib>Parot’kin, S. V.</creatorcontrib><creatorcontrib>Tarakanov, I. A.</creatorcontrib><title>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.</description><subject>Distribution functions</subject><subject>Dynamic models</subject><subject>Electrical resistivity</subject><subject>Electron drift velocity</subject><subject>Electrons</subject><subject>Kinetic equations</subject><subject>Kinetics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Simulation and Modeling</subject><subject>Specific energy</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRSMEElXpB7CzxDowfrR2l1BKqSjqorCOHMcBV4ld7ASpfAWfjEN4LBCzmavRPXdGkySnGM4xpuxiQ4ADMEEIAwIYxEEy6EYpsCkc_mhBjpNRCFuIRQkXVAyS97VFzbNGM2dD41vVGGeRK5FECxnS672VtVHo3hW66sbzSqvGGyWrjig6_6tp9p-ERUtnzZsuOhRdyRBVDJNo0-60V67etY32aGPqtpLfe_rAqO-M1Y1R4SQ5KmUV9OirD5PHm_nD7DZdrRfL2eUqVTgennJKgCkGKpdlXvCc5-Ukn0COSwJRjCeklBoEBioKSrRilJRQTLngUw6yoHSYnPW5O-9eWh2abOtab-PKjAJjjE_EGKIL9y7lXQhel9nOm1r6fYYh636f_fl9ZEjPhOi1T9r_Jv8PfQAZ1YWk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Markov, M. B.</creator><creator>Kosarev, O. S.</creator><creator>Parot’kin, S. V.</creator><creator>Tarakanov, I. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</title><author>Markov, M. B. ; Kosarev, O. S. ; Parot’kin, S. V. ; Tarakanov, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distribution functions</topic><topic>Dynamic models</topic><topic>Electrical resistivity</topic><topic>Electron drift velocity</topic><topic>Electrons</topic><topic>Kinetic equations</topic><topic>Kinetics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Simulation and Modeling</topic><topic>Specific energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markov, M. B.</creatorcontrib><creatorcontrib>Kosarev, O. S.</creatorcontrib><creatorcontrib>Parot’kin, S. V.</creatorcontrib><creatorcontrib>Tarakanov, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markov, M. B.</au><au>Kosarev, O. S.</au><au>Parot’kin, S. V.</au><au>Tarakanov, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>302</spage><epage>309</epage><pages>302-309</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>The derivation of a gas-dynamic model of the radiative conductivity of a weakly ionized gas based on an analysis of the electron kinetics is presented. The gas is formed by the impact ionization of rarefied air by fast primary electrons. The distribution function of slow secondary electrons is studied by the local numerical solution of the kinetic equation. The revealed properties of the distribution function are used to derive equations for the concentration, drift velocity, and specific energy of slow electrons.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048224020108</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0482
ispartof Mathematical models and computer simulations, 2024-04, Vol.16 (2), p.302-309
issn 2070-0482
2070-0490
language eng
recordid cdi_proquest_journals_3044476850
source Springer Link
subjects Distribution functions
Dynamic models
Electrical resistivity
Electron drift velocity
Electrons
Kinetic equations
Kinetics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Simulation and Modeling
Specific energy
title On the Construction of a Gas-Dynamic Model of Electrical Conductivity of an Ionized Gas Based on a Supercomputer Simulation of Electron Kinetics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20a%20Gas-Dynamic%20Model%20of%20Electrical%20Conductivity%20of%20an%20Ionized%20Gas%20Based%20on%20a%20Supercomputer%20Simulation%20of%20Electron%20Kinetics&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Markov,%20M.%20B.&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=302&rft.epage=309&rft.pages=302-309&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048224020108&rft_dat=%3Cproquest_cross%3E3044476850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1838-73204c40cbafbd7b7bf6b60b1f206b6562fae081038d32ec432f0d9787970ad33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044476850&rft_id=info:pmid/&rfr_iscdi=true