Loading…
An Affordable Hardware-Aware Neural Architecture Search for Deploying Convolutional Neural Networks on Ultra-Low-Power Computing Platforms
Hardware-aware neural architecture search (HW-NAS) allows the integration of convolutional neural networks (CNNs) in microcontrollers devices by automatically designing neural architectures that can fit prearranged hardware constraints. However, state-of-the-art HW-NAS target high-performance microc...
Saved in:
Published in: | IEEE sensors letters 2024-05, Vol.8 (5), p.1-4 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-5fce707ebe3eb40ba438f77a9c65403a95fc5341865e6b399a0d6a710973baa3 |
container_end_page | 4 |
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 8 |
creator | Garavagno, Andrea Mattia Ragusa, Edoardo Frisoli, Antonio Gastaldo, Paolo |
description | Hardware-aware neural architecture search (HW-NAS) allows the integration of convolutional neural networks (CNNs) in microcontrollers devices by automatically designing neural architectures that can fit prearranged hardware constraints. However, state-of-the-art HW-NAS target high-performance microcontrollers, whose power consumption does not meet sensing nodes requirements. This letter presents a HW-NAS generating tiny CNNs that can run on ultra-low-power microcontrollers, featuring a lightweight search procedure enabling its execution even on embedded devices. Empirical results on three well-known benchmarks for tiny computer vision proved that the proposed HW-NAS was able to generate tiny CNNs while preserving state-of-the-art classification accuracy. |
doi_str_mv | 10.1109/LSENS.2024.3387056 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3044651205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10496186</ieee_id><sourcerecordid>3044651205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5fce707ebe3eb40ba438f77a9c65403a95fc5341865e6b399a0d6a710973baa3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOHQvIF4EvO5MmqRpL8ucTihzsHkd0u5UO7umJq1lr-BTm7ld7CYn5_B9h8OP0B0lE0pJ8pitZovVJCQhnzAWSyKiCzQKuRQB5TK8PPtfo7FzW0IIjUNJGBmh37TBaVkau9F5DXiu7WbQFoL08OIF9FbXOLXFZ9VB0fV-tgLtW-wV_ARtbfZV84Gnpvkxdd9VpvH8SVtANxj75bBp8HvdWR1kZgiWZgDrhV3rca8ua935ZTt3i65KXTsYn-oNWj_P1tN5kL29vE7TLCjChHaBKAuQREIODHJOcs1ZXEqpkyISnDCdeEAwTuNIQJSzJNFkE2npg5Is15rdoIfj2taa7x5cp7amt_5spxjhPBI0JMJT4ZEqrHHOQqlaW-203StK1CF19Z-6OqSuTql76f4oVQBwJvAk8uewPyzFgFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044651205</pqid></control><display><type>article</type><title>An Affordable Hardware-Aware Neural Architecture Search for Deploying Convolutional Neural Networks on Ultra-Low-Power Computing Platforms</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Garavagno, Andrea Mattia ; Ragusa, Edoardo ; Frisoli, Antonio ; Gastaldo, Paolo</creator><creatorcontrib>Garavagno, Andrea Mattia ; Ragusa, Edoardo ; Frisoli, Antonio ; Gastaldo, Paolo</creatorcontrib><description>Hardware-aware neural architecture search (HW-NAS) allows the integration of convolutional neural networks (CNNs) in microcontrollers devices by automatically designing neural architectures that can fit prearranged hardware constraints. However, state-of-the-art HW-NAS target high-performance microcontrollers, whose power consumption does not meet sensing nodes requirements. This letter presents a HW-NAS generating tiny CNNs that can run on ultra-low-power microcontrollers, featuring a lightweight search procedure enabling its execution even on embedded devices. Empirical results on three well-known benchmarks for tiny computer vision proved that the proposed HW-NAS was able to generate tiny CNNs while preserving state-of-the-art classification accuracy.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3387056</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Computer architecture ; Computer vision ; Costs ; Embedded systems ; Hardware ; hardware-aware neural architecture search (HW-NAS) ; Kernel ; Microcontrollers ; Power consumption ; Power management ; Random access memory ; Search problems ; Searching ; Sensor applications ; Sensors ; TinyML ; Training ; ultra-low-power computing</subject><ispartof>IEEE sensors letters, 2024-05, Vol.8 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-5fce707ebe3eb40ba438f77a9c65403a95fc5341865e6b399a0d6a710973baa3</cites><orcidid>0000-0002-7126-4113 ; 0000-0003-4038-0805 ; 0000-0002-5748-3942 ; 0000-0002-5527-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10496186$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Garavagno, Andrea Mattia</creatorcontrib><creatorcontrib>Ragusa, Edoardo</creatorcontrib><creatorcontrib>Frisoli, Antonio</creatorcontrib><creatorcontrib>Gastaldo, Paolo</creatorcontrib><title>An Affordable Hardware-Aware Neural Architecture Search for Deploying Convolutional Neural Networks on Ultra-Low-Power Computing Platforms</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Hardware-aware neural architecture search (HW-NAS) allows the integration of convolutional neural networks (CNNs) in microcontrollers devices by automatically designing neural architectures that can fit prearranged hardware constraints. However, state-of-the-art HW-NAS target high-performance microcontrollers, whose power consumption does not meet sensing nodes requirements. This letter presents a HW-NAS generating tiny CNNs that can run on ultra-low-power microcontrollers, featuring a lightweight search procedure enabling its execution even on embedded devices. Empirical results on three well-known benchmarks for tiny computer vision proved that the proposed HW-NAS was able to generate tiny CNNs while preserving state-of-the-art classification accuracy.</description><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Costs</subject><subject>Embedded systems</subject><subject>Hardware</subject><subject>hardware-aware neural architecture search (HW-NAS)</subject><subject>Kernel</subject><subject>Microcontrollers</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Random access memory</subject><subject>Search problems</subject><subject>Searching</subject><subject>Sensor applications</subject><subject>Sensors</subject><subject>TinyML</subject><subject>Training</subject><subject>ultra-low-power computing</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkNFKwzAUhoMoOHQvIF4EvO5MmqRpL8ucTihzsHkd0u5UO7umJq1lr-BTm7ld7CYn5_B9h8OP0B0lE0pJ8pitZovVJCQhnzAWSyKiCzQKuRQB5TK8PPtfo7FzW0IIjUNJGBmh37TBaVkau9F5DXiu7WbQFoL08OIF9FbXOLXFZ9VB0fV-tgLtW-wV_ARtbfZV84Gnpvkxdd9VpvH8SVtANxj75bBp8HvdWR1kZgiWZgDrhV3rca8ua935ZTt3i65KXTsYn-oNWj_P1tN5kL29vE7TLCjChHaBKAuQREIODHJOcs1ZXEqpkyISnDCdeEAwTuNIQJSzJNFkE2npg5Is15rdoIfj2taa7x5cp7amt_5spxjhPBI0JMJT4ZEqrHHOQqlaW-203StK1CF19Z-6OqSuTql76f4oVQBwJvAk8uewPyzFgFI</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Garavagno, Andrea Mattia</creator><creator>Ragusa, Edoardo</creator><creator>Frisoli, Antonio</creator><creator>Gastaldo, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7126-4113</orcidid><orcidid>https://orcid.org/0000-0003-4038-0805</orcidid><orcidid>https://orcid.org/0000-0002-5748-3942</orcidid><orcidid>https://orcid.org/0000-0002-5527-6325</orcidid></search><sort><creationdate>20240501</creationdate><title>An Affordable Hardware-Aware Neural Architecture Search for Deploying Convolutional Neural Networks on Ultra-Low-Power Computing Platforms</title><author>Garavagno, Andrea Mattia ; Ragusa, Edoardo ; Frisoli, Antonio ; Gastaldo, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5fce707ebe3eb40ba438f77a9c65403a95fc5341865e6b399a0d6a710973baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Costs</topic><topic>Embedded systems</topic><topic>Hardware</topic><topic>hardware-aware neural architecture search (HW-NAS)</topic><topic>Kernel</topic><topic>Microcontrollers</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Random access memory</topic><topic>Search problems</topic><topic>Searching</topic><topic>Sensor applications</topic><topic>Sensors</topic><topic>TinyML</topic><topic>Training</topic><topic>ultra-low-power computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garavagno, Andrea Mattia</creatorcontrib><creatorcontrib>Ragusa, Edoardo</creatorcontrib><creatorcontrib>Frisoli, Antonio</creatorcontrib><creatorcontrib>Gastaldo, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garavagno, Andrea Mattia</au><au>Ragusa, Edoardo</au><au>Frisoli, Antonio</au><au>Gastaldo, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Affordable Hardware-Aware Neural Architecture Search for Deploying Convolutional Neural Networks on Ultra-Low-Power Computing Platforms</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>8</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Hardware-aware neural architecture search (HW-NAS) allows the integration of convolutional neural networks (CNNs) in microcontrollers devices by automatically designing neural architectures that can fit prearranged hardware constraints. However, state-of-the-art HW-NAS target high-performance microcontrollers, whose power consumption does not meet sensing nodes requirements. This letter presents a HW-NAS generating tiny CNNs that can run on ultra-low-power microcontrollers, featuring a lightweight search procedure enabling its execution even on embedded devices. Empirical results on three well-known benchmarks for tiny computer vision proved that the proposed HW-NAS was able to generate tiny CNNs while preserving state-of-the-art classification accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2024.3387056</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7126-4113</orcidid><orcidid>https://orcid.org/0000-0003-4038-0805</orcidid><orcidid>https://orcid.org/0000-0002-5748-3942</orcidid><orcidid>https://orcid.org/0000-0002-5527-6325</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2024-05, Vol.8 (5), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_proquest_journals_3044651205 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Computer architecture Computer vision Costs Embedded systems Hardware hardware-aware neural architecture search (HW-NAS) Kernel Microcontrollers Power consumption Power management Random access memory Search problems Searching Sensor applications Sensors TinyML Training ultra-low-power computing |
title | An Affordable Hardware-Aware Neural Architecture Search for Deploying Convolutional Neural Networks on Ultra-Low-Power Computing Platforms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Affordable%20Hardware-Aware%20Neural%20Architecture%20Search%20for%20Deploying%20Convolutional%20Neural%20Networks%20on%20Ultra-Low-Power%20Computing%20Platforms&rft.jtitle=IEEE%20sensors%20letters&rft.au=Garavagno,%20Andrea%20Mattia&rft.date=2024-05-01&rft.volume=8&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3387056&rft_dat=%3Cproquest_ieee_%3E3044651205%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-5fce707ebe3eb40ba438f77a9c65403a95fc5341865e6b399a0d6a710973baa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044651205&rft_id=info:pmid/&rft_ieee_id=10496186&rfr_iscdi=true |