Loading…
Numerical investigation of turbulence generation using Zakharov-like model equation
This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like e...
Saved in:
Published in: | Physics of fluids (1994) 2024-04, Vol.36 (4) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Kumar, Praveen Uma, R. Sharma, R. P. |
description | This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows
k
−
1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range. |
doi_str_mv | 10.1063/5.0205858 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3044671304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044671304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0icQIpZe0kG_uIKv6kCg7AhUtkO3ZwmyatnVTi7UmbnjnNSPtpZ3cIuaYwo4DJfTYDBhnP-AmZUOAizhHxdO9ziBETek4uQlgCQCIYTsjHW7823mlZR67ZmdC5SnaubaLWRl3vVV-bRpuoMo3x46APrqmib7n6kb7dxbVbmWjdlqaOzLY_IJfkzMo6mKujTsnX0-Pn_CVevD-_zh8WsWY872IOJdWKZVYxw1KZKQSWpEyUFpm1XCiVCNQq5YIJlae01BYRqFRANXKKyZTcjHs3vt32w-3Fsu19M0QWCaQp5nSQgbodKe3bELyxxca7tfS_BYVi31mRFcfOBvZuZIN23eGXf-A_33xsAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044671304</pqid></control><display><type>article</type><title>Numerical investigation of turbulence generation using Zakharov-like model equation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Kumar, Praveen ; Uma, R. ; Sharma, R. P.</creator><creatorcontrib>Kumar, Praveen ; Uma, R. ; Sharma, R. P.</creatorcontrib><description>This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows
k
−
1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0205858</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic waves ; Conservation equations ; Energy spectra ; Finite difference method ; Fluid flow ; Mathematical models ; Nonlinearity ; Schrodinger equation ; Turbulence</subject><ispartof>Physics of fluids (1994), 2024-04, Vol.36 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163</cites><orcidid>0000-0002-6451-5332 ; 0000-0003-3924-331X ; 0000-0003-3239-0747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Uma, R.</creatorcontrib><creatorcontrib>Sharma, R. P.</creatorcontrib><title>Numerical investigation of turbulence generation using Zakharov-like model equation</title><title>Physics of fluids (1994)</title><description>This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows
k
−
1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.</description><subject>Acoustic waves</subject><subject>Conservation equations</subject><subject>Energy spectra</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><subject>Turbulence</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0icQIpZe0kG_uIKv6kCg7AhUtkO3ZwmyatnVTi7UmbnjnNSPtpZ3cIuaYwo4DJfTYDBhnP-AmZUOAizhHxdO9ziBETek4uQlgCQCIYTsjHW7823mlZR67ZmdC5SnaubaLWRl3vVV-bRpuoMo3x46APrqmib7n6kb7dxbVbmWjdlqaOzLY_IJfkzMo6mKujTsnX0-Pn_CVevD-_zh8WsWY872IOJdWKZVYxw1KZKQSWpEyUFpm1XCiVCNQq5YIJlae01BYRqFRANXKKyZTcjHs3vt32w-3Fsu19M0QWCaQp5nSQgbodKe3bELyxxca7tfS_BYVi31mRFcfOBvZuZIN23eGXf-A_33xsAA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Kumar, Praveen</creator><creator>Uma, R.</creator><creator>Sharma, R. P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6451-5332</orcidid><orcidid>https://orcid.org/0000-0003-3924-331X</orcidid><orcidid>https://orcid.org/0000-0003-3239-0747</orcidid></search><sort><creationdate>202404</creationdate><title>Numerical investigation of turbulence generation using Zakharov-like model equation</title><author>Kumar, Praveen ; Uma, R. ; Sharma, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Conservation equations</topic><topic>Energy spectra</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Uma, R.</creatorcontrib><creatorcontrib>Sharma, R. P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Praveen</au><au>Uma, R.</au><au>Sharma, R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of turbulence generation using Zakharov-like model equation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows
k
−
1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0205858</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6451-5332</orcidid><orcidid>https://orcid.org/0000-0003-3924-331X</orcidid><orcidid>https://orcid.org/0000-0003-3239-0747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-04, Vol.36 (4) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3044671304 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Acoustic waves Conservation equations Energy spectra Finite difference method Fluid flow Mathematical models Nonlinearity Schrodinger equation Turbulence |
title | Numerical investigation of turbulence generation using Zakharov-like model equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20turbulence%20generation%20using%20Zakharov-like%20model%20equation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kumar,%20Praveen&rft.date=2024-04&rft.volume=36&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0205858&rft_dat=%3Cproquest_scita%3E3044671304%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044671304&rft_id=info:pmid/&rfr_iscdi=true |