Loading…

Numerical investigation of turbulence generation using Zakharov-like model equation

This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like e...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-04, Vol.36 (4)
Main Authors: Kumar, Praveen, Uma, R., Sharma, R. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163
container_end_page
container_issue 4
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Kumar, Praveen
Uma, R.
Sharma, R. P.
description This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows k − 1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.
doi_str_mv 10.1063/5.0205858
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3044671304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044671304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0icQIpZe0kG_uIKv6kCg7AhUtkO3ZwmyatnVTi7UmbnjnNSPtpZ3cIuaYwo4DJfTYDBhnP-AmZUOAizhHxdO9ziBETek4uQlgCQCIYTsjHW7823mlZR67ZmdC5SnaubaLWRl3vVV-bRpuoMo3x46APrqmib7n6kb7dxbVbmWjdlqaOzLY_IJfkzMo6mKujTsnX0-Pn_CVevD-_zh8WsWY872IOJdWKZVYxw1KZKQSWpEyUFpm1XCiVCNQq5YIJlae01BYRqFRANXKKyZTcjHs3vt32w-3Fsu19M0QWCaQp5nSQgbodKe3bELyxxca7tfS_BYVi31mRFcfOBvZuZIN23eGXf-A_33xsAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044671304</pqid></control><display><type>article</type><title>Numerical investigation of turbulence generation using Zakharov-like model equation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Kumar, Praveen ; Uma, R. ; Sharma, R. P.</creator><creatorcontrib>Kumar, Praveen ; Uma, R. ; Sharma, R. P.</creatorcontrib><description>This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows k − 1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0205858</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic waves ; Conservation equations ; Energy spectra ; Finite difference method ; Fluid flow ; Mathematical models ; Nonlinearity ; Schrodinger equation ; Turbulence</subject><ispartof>Physics of fluids (1994), 2024-04, Vol.36 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163</cites><orcidid>0000-0002-6451-5332 ; 0000-0003-3924-331X ; 0000-0003-3239-0747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Uma, R.</creatorcontrib><creatorcontrib>Sharma, R. P.</creatorcontrib><title>Numerical investigation of turbulence generation using Zakharov-like model equation</title><title>Physics of fluids (1994)</title><description>This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows k − 1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.</description><subject>Acoustic waves</subject><subject>Conservation equations</subject><subject>Energy spectra</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><subject>Turbulence</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0icQIpZe0kG_uIKv6kCg7AhUtkO3ZwmyatnVTi7UmbnjnNSPtpZ3cIuaYwo4DJfTYDBhnP-AmZUOAizhHxdO9ziBETek4uQlgCQCIYTsjHW7823mlZR67ZmdC5SnaubaLWRl3vVV-bRpuoMo3x46APrqmib7n6kb7dxbVbmWjdlqaOzLY_IJfkzMo6mKujTsnX0-Pn_CVevD-_zh8WsWY872IOJdWKZVYxw1KZKQSWpEyUFpm1XCiVCNQq5YIJlae01BYRqFRANXKKyZTcjHs3vt32w-3Fsu19M0QWCaQp5nSQgbodKe3bELyxxca7tfS_BYVi31mRFcfOBvZuZIN23eGXf-A_33xsAA</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Kumar, Praveen</creator><creator>Uma, R.</creator><creator>Sharma, R. P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6451-5332</orcidid><orcidid>https://orcid.org/0000-0003-3924-331X</orcidid><orcidid>https://orcid.org/0000-0003-3239-0747</orcidid></search><sort><creationdate>202404</creationdate><title>Numerical investigation of turbulence generation using Zakharov-like model equation</title><author>Kumar, Praveen ; Uma, R. ; Sharma, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Conservation equations</topic><topic>Energy spectra</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Praveen</creatorcontrib><creatorcontrib>Uma, R.</creatorcontrib><creatorcontrib>Sharma, R. P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Praveen</au><au>Uma, R.</au><au>Sharma, R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of turbulence generation using Zakharov-like model equation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study investigates the turbulence generation behavior with a Zakharov-like (ZL) equation in a fluid system. The model equation is derived using conservation equations (mass and momentum conservation), and the source of nonlinearity is the high amplitude of the acoustic wave. The Zakharov-like equation has been derived and then solved numerically, then turned into a modified nonlinear Schrödinger equation. Furthermore, modulation instability, or Benjamin–Feir instability, of the model equations, which leads to the emergence of Akhmediev breathers, is discussed. The numerical simulation uses a finite difference method for temporal evolution and a pseudo-spectral approach to determine spatial regimes. The outcomes indicate that the situation involving the nonlinear Schrödinger equation case displays a periodic pattern in space and time. The findings also demonstrate that the localization of structure and the Fermi, Pasta, and Ulam (FPU) recurrences are disrupted for the modified nonlinear Schrödinger equation and Zakharov-like equation cases. The energy spectrum exhibits a power law behavior that approximately follows k − 1.65 in the ZL model equation case, and it is steeper than Kolmogorov's spectrum within the inertial sub-range.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0205858</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6451-5332</orcidid><orcidid>https://orcid.org/0000-0003-3924-331X</orcidid><orcidid>https://orcid.org/0000-0003-3239-0747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-04, Vol.36 (4)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3044671304
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Acoustic waves
Conservation equations
Energy spectra
Finite difference method
Fluid flow
Mathematical models
Nonlinearity
Schrodinger equation
Turbulence
title Numerical investigation of turbulence generation using Zakharov-like model equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20turbulence%20generation%20using%20Zakharov-like%20model%20equation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kumar,%20Praveen&rft.date=2024-04&rft.volume=36&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0205858&rft_dat=%3Cproquest_scita%3E3044671304%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-80d1cb25fb2e24a5b6023429df62ff89bb396cb48929b741dcf6601ab01c68163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044671304&rft_id=info:pmid/&rfr_iscdi=true