Loading…
UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition
The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Bin Gu, Zhuangcheng Liang, Guang Xu, Chao Zhang, Bo Shi, Botian He, Conghui |
description | The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances to train high-quality, robust models. Additionally, UniMER features a meticulously designed, diverse test set, UniMER-Test, which covers a variety of formula distributions found in real-world scenarios, providing a more comprehensive and fair evaluation. To better utilize the UniMER dataset, the paper proposes a Universal Mathematical Expression Recognition Network (UniMERNet), tailored to the characteristics of formula recognition. UniMERNet consists of a carefully designed encoder that incorporates detail-aware and local context features, and an optimized decoder for accelerated performance. Extensive experiments conducted using the UniMER-1M dataset and UniMERNet demonstrate that training on the large-scale UniMER-1M dataset can produce a more generalizable formula recognition model, significantly outperforming all previous datasets. Furthermore, the introduction of UniMERNet enhances the model's performance in formula recognition, achieving higher accuracy and speeds. All data, models, and code are available at https://github.com/opendatalab/UniMERNet. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3044855777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044855777</sourcerecordid><originalsourceid>FETCH-proquest_journals_30448557773</originalsourceid><addsrcrecordid>eNqNiksKwjAARIMgWLR3CLguxHxMcSdScVPBorgsoaaaGpOapOrxzcIDuJqZN28EEkzIIsspxhOQet8hhPCSY8ZIAg4no8qi2suwgmsYx0s6LzSM4G3dHbbWwUoKnZ2t0xdYinCTDxFUE53i0zvpvbImKo29GhVin4FxK7SX6S-nYL4tjptd1jv7HKQPdWcHZ-JVE0RpzhjnnPxnfQFSgD8K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044855777</pqid></control><display><type>article</type><title>UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition</title><source>Publicly Available Content Database</source><creator>Wang, Bin ; Gu, Zhuangcheng ; Liang, Guang ; Xu, Chao ; Zhang, Bo ; Shi, Botian ; He, Conghui</creator><creatorcontrib>Wang, Bin ; Gu, Zhuangcheng ; Liang, Guang ; Xu, Chao ; Zhang, Bo ; Shi, Botian ; He, Conghui</creatorcontrib><description>The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances to train high-quality, robust models. Additionally, UniMER features a meticulously designed, diverse test set, UniMER-Test, which covers a variety of formula distributions found in real-world scenarios, providing a more comprehensive and fair evaluation. To better utilize the UniMER dataset, the paper proposes a Universal Mathematical Expression Recognition Network (UniMERNet), tailored to the characteristics of formula recognition. UniMERNet consists of a carefully designed encoder that incorporates detail-aware and local context features, and an optimized decoder for accelerated performance. Extensive experiments conducted using the UniMER-1M dataset and UniMERNet demonstrate that training on the large-scale UniMER-1M dataset can produce a more generalizable formula recognition model, significantly outperforming all previous datasets. Furthermore, the introduction of UniMERNet enhances the model's performance in formula recognition, achieving higher accuracy and speeds. All data, models, and code are available at https://github.com/opendatalab/UniMERNet.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Formulas (mathematics) ; Mathematical analysis ; Model accuracy ; Recognition ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3044855777?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Gu, Zhuangcheng</creatorcontrib><creatorcontrib>Liang, Guang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Shi, Botian</creatorcontrib><creatorcontrib>He, Conghui</creatorcontrib><title>UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition</title><title>arXiv.org</title><description>The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances to train high-quality, robust models. Additionally, UniMER features a meticulously designed, diverse test set, UniMER-Test, which covers a variety of formula distributions found in real-world scenarios, providing a more comprehensive and fair evaluation. To better utilize the UniMER dataset, the paper proposes a Universal Mathematical Expression Recognition Network (UniMERNet), tailored to the characteristics of formula recognition. UniMERNet consists of a carefully designed encoder that incorporates detail-aware and local context features, and an optimized decoder for accelerated performance. Extensive experiments conducted using the UniMER-1M dataset and UniMERNet demonstrate that training on the large-scale UniMER-1M dataset can produce a more generalizable formula recognition model, significantly outperforming all previous datasets. Furthermore, the introduction of UniMERNet enhances the model's performance in formula recognition, achieving higher accuracy and speeds. All data, models, and code are available at https://github.com/opendatalab/UniMERNet.</description><subject>Datasets</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Model accuracy</subject><subject>Recognition</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAARIMgWLR3CLguxHxMcSdScVPBorgsoaaaGpOapOrxzcIDuJqZN28EEkzIIsspxhOQet8hhPCSY8ZIAg4no8qi2suwgmsYx0s6LzSM4G3dHbbWwUoKnZ2t0xdYinCTDxFUE53i0zvpvbImKo29GhVin4FxK7SX6S-nYL4tjptd1jv7HKQPdWcHZ-JVE0RpzhjnnPxnfQFSgD8K</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Wang, Bin</creator><creator>Gu, Zhuangcheng</creator><creator>Liang, Guang</creator><creator>Xu, Chao</creator><creator>Zhang, Bo</creator><creator>Shi, Botian</creator><creator>He, Conghui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240905</creationdate><title>UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition</title><author>Wang, Bin ; Gu, Zhuangcheng ; Liang, Guang ; Xu, Chao ; Zhang, Bo ; Shi, Botian ; He, Conghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30448557773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Model accuracy</topic><topic>Recognition</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Gu, Zhuangcheng</creatorcontrib><creatorcontrib>Liang, Guang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Shi, Botian</creatorcontrib><creatorcontrib>He, Conghui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bin</au><au>Gu, Zhuangcheng</au><au>Liang, Guang</au><au>Xu, Chao</au><au>Zhang, Bo</au><au>Shi, Botian</au><au>He, Conghui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition</atitle><jtitle>arXiv.org</jtitle><date>2024-09-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The paper introduces the UniMER dataset, marking the first study on Mathematical Expression Recognition (MER) targeting complex real-world scenarios. The UniMER dataset includes a large-scale training set, UniMER-1M, which offers unprecedented scale and diversity with one million training instances to train high-quality, robust models. Additionally, UniMER features a meticulously designed, diverse test set, UniMER-Test, which covers a variety of formula distributions found in real-world scenarios, providing a more comprehensive and fair evaluation. To better utilize the UniMER dataset, the paper proposes a Universal Mathematical Expression Recognition Network (UniMERNet), tailored to the characteristics of formula recognition. UniMERNet consists of a carefully designed encoder that incorporates detail-aware and local context features, and an optimized decoder for accelerated performance. Extensive experiments conducted using the UniMER-1M dataset and UniMERNet demonstrate that training on the large-scale UniMER-1M dataset can produce a more generalizable formula recognition model, significantly outperforming all previous datasets. Furthermore, the introduction of UniMERNet enhances the model's performance in formula recognition, achieving higher accuracy and speeds. All data, models, and code are available at https://github.com/opendatalab/UniMERNet.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3044855777 |
source | Publicly Available Content Database |
subjects | Datasets Formulas (mathematics) Mathematical analysis Model accuracy Recognition Robustness (mathematics) |
title | UniMERNet: A Universal Network for Real-World Mathematical Expression Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=UniMERNet:%20A%20Universal%20Network%20for%20Real-World%20Mathematical%20Expression%20Recognition&rft.jtitle=arXiv.org&rft.au=Wang,%20Bin&rft.date=2024-09-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3044855777%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30448557773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3044855777&rft_id=info:pmid/&rfr_iscdi=true |