Loading…
High-precision Atmospheric Characterization of a Y Dwarf with JWST NIRSpec G395H Spectroscopy: Isotopologue, C/O Ratio, Metallicity, and the Abundances of Six Molecular Species
The launch of the James Webb Space Telescope (JWST) marks a pivotal moment for precise atmospheric characterization of Y dwarfs, the coldest brown dwarf spectral type. In this study, we leverage moderate spectral resolution observations ( R ∼ 2700) with the G395H grating of the Near-Infrared Spectro...
Saved in:
Published in: | The Astronomical journal 2024-05, Vol.167 (5), p.237 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The launch of the James Webb Space Telescope (JWST) marks a pivotal moment for precise atmospheric characterization of Y dwarfs, the coldest brown dwarf spectral type. In this study, we leverage moderate spectral resolution observations ( R ∼ 2700) with the G395H grating of the Near-Infrared Spectrograph (NIRSpec) on board JWST to characterize the nearby (9.9 pc) Y dwarf WISEPA J182831.08+265037.8. With the NIRSpec G395H 2.88–5.12 μ m spectrum, we measure the abundances of CO, CO 2 , CH 4 , H 2 S, NH 3 , and H 2 O, which are the major carbon-, nitrogen-, oxygen-, and sulfur-bearing species in the atmosphere. Based on the retrieved volume mixing ratios with the atmospheric retrieval framework CHIMERA, we report that the C/O ratio is 0.45 ± 0.01, close to the solar C/O value of 0.458, and the metallicity is +0.30 ± 0.02 dex. Comparison between the retrieval results and the forward modeling results suggests that the model bias for C/O and metallicity could be as high as 0.03 and 0.97 dex, respectively. We also report a lower limit of the 12 CO/ 13 CO ratio of >40, being consistent with the nominal solar value of 90. Our results highlight the potential for JWST to measure the C/O ratios down to percent-level precision and characterize isotopologues of cold planetary atmospheres similar to WISE 1828. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/ad3425 |