Loading…
ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model
Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredi...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhu, Yuanshao Yu, James Jianqiao Zhao, Xiangyu Liu, Qidong Ye, Yongchao Chen, Wei Zhang, Zijian Wei, Xuetao Liang, Yuxuan |
description | Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredictability of human activities, grappling with issues such as fidelity, flexibility, and generalizability. To overcome these obstacles, we propose ControlTraj, a Controllable Trajectory generation framework with the topology-constrained diffusion model. Distinct from prior approaches, ControlTraj utilizes a diffusion model to generate high-fidelity trajectories while integrating the structural constraints of road network topology to guide the geographical outcomes. Specifically, we develop a novel road segment autoencoder to extract fine-grained road segment embedding. The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture, named GeoUNet, to synthesize geographic trajectories from white noise. Through experimentation across three real-world data settings, ControlTraj demonstrates its ability to produce human-directed, high-fidelity trajectory generation with adaptability to unexplored geographical contexts. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3045973830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045973830</sourcerecordid><originalsourceid>FETCH-proquest_journals_30459738303</originalsourceid><addsrcrecordid>eNqNi8sOgjAURBsTE4nyD01ck9QWBN3ia-OOjStS5KIlTS-2JYa_FxI-wNVk5pxZkIALsYuymPMVCZ1rGWN8n_IkEQF55Gi8RV1Y2R7pXLSsNNBpgqdHO9ArGLDSKzT0q_ybFtihxtcQjQfnrVQGanpSTdO7ybljDXpDlo3UDsI512R7ORf5Leosfnpwvmyxt2ZEpWBxckhFJpj4z_oBXvlDKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3045973830</pqid></control><display><type>article</type><title>ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model</title><source>Publicly Available Content (ProQuest)</source><creator>Zhu, Yuanshao ; Yu, James Jianqiao ; Zhao, Xiangyu ; Liu, Qidong ; Ye, Yongchao ; Chen, Wei ; Zhang, Zijian ; Wei, Xuetao ; Liang, Yuxuan</creator><creatorcontrib>Zhu, Yuanshao ; Yu, James Jianqiao ; Zhao, Xiangyu ; Liu, Qidong ; Ye, Yongchao ; Chen, Wei ; Zhang, Zijian ; Wei, Xuetao ; Liang, Yuxuan</creatorcontrib><description>Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredictability of human activities, grappling with issues such as fidelity, flexibility, and generalizability. To overcome these obstacles, we propose ControlTraj, a Controllable Trajectory generation framework with the topology-constrained diffusion model. Distinct from prior approaches, ControlTraj utilizes a diffusion model to generate high-fidelity trajectories while integrating the structural constraints of road network topology to guide the geographical outcomes. Specifically, we develop a novel road segment autoencoder to extract fine-grained road segment embedding. The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture, named GeoUNet, to synthesize geographic trajectories from white noise. Through experimentation across three real-world data settings, ControlTraj demonstrates its ability to produce human-directed, high-fidelity trajectory generation with adaptability to unexplored geographical contexts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Constraints ; Controllability ; Cost analysis ; Geography ; Network topologies ; Roads ; Segments ; Trajectory analysis ; Trajectory control ; White noise</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3045973830?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhu, Yuanshao</creatorcontrib><creatorcontrib>Yu, James Jianqiao</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Liu, Qidong</creatorcontrib><creatorcontrib>Ye, Yongchao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Zijian</creatorcontrib><creatorcontrib>Wei, Xuetao</creatorcontrib><creatorcontrib>Liang, Yuxuan</creatorcontrib><title>ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model</title><title>arXiv.org</title><description>Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredictability of human activities, grappling with issues such as fidelity, flexibility, and generalizability. To overcome these obstacles, we propose ControlTraj, a Controllable Trajectory generation framework with the topology-constrained diffusion model. Distinct from prior approaches, ControlTraj utilizes a diffusion model to generate high-fidelity trajectories while integrating the structural constraints of road network topology to guide the geographical outcomes. Specifically, we develop a novel road segment autoencoder to extract fine-grained road segment embedding. The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture, named GeoUNet, to synthesize geographic trajectories from white noise. Through experimentation across three real-world data settings, ControlTraj demonstrates its ability to produce human-directed, high-fidelity trajectory generation with adaptability to unexplored geographical contexts.</description><subject>Accuracy</subject><subject>Constraints</subject><subject>Controllability</subject><subject>Cost analysis</subject><subject>Geography</subject><subject>Network topologies</subject><subject>Roads</subject><subject>Segments</subject><subject>Trajectory analysis</subject><subject>Trajectory control</subject><subject>White noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi8sOgjAURBsTE4nyD01ck9QWBN3ia-OOjStS5KIlTS-2JYa_FxI-wNVk5pxZkIALsYuymPMVCZ1rGWN8n_IkEQF55Gi8RV1Y2R7pXLSsNNBpgqdHO9ArGLDSKzT0q_ybFtihxtcQjQfnrVQGanpSTdO7ybljDXpDlo3UDsI512R7ORf5Leosfnpwvmyxt2ZEpWBxckhFJpj4z_oBXvlDKg</recordid><startdate>20240423</startdate><enddate>20240423</enddate><creator>Zhu, Yuanshao</creator><creator>Yu, James Jianqiao</creator><creator>Zhao, Xiangyu</creator><creator>Liu, Qidong</creator><creator>Ye, Yongchao</creator><creator>Chen, Wei</creator><creator>Zhang, Zijian</creator><creator>Wei, Xuetao</creator><creator>Liang, Yuxuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240423</creationdate><title>ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model</title><author>Zhu, Yuanshao ; Yu, James Jianqiao ; Zhao, Xiangyu ; Liu, Qidong ; Ye, Yongchao ; Chen, Wei ; Zhang, Zijian ; Wei, Xuetao ; Liang, Yuxuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30459738303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Constraints</topic><topic>Controllability</topic><topic>Cost analysis</topic><topic>Geography</topic><topic>Network topologies</topic><topic>Roads</topic><topic>Segments</topic><topic>Trajectory analysis</topic><topic>Trajectory control</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuanshao</creatorcontrib><creatorcontrib>Yu, James Jianqiao</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Liu, Qidong</creatorcontrib><creatorcontrib>Ye, Yongchao</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Zijian</creatorcontrib><creatorcontrib>Wei, Xuetao</creatorcontrib><creatorcontrib>Liang, Yuxuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yuanshao</au><au>Yu, James Jianqiao</au><au>Zhao, Xiangyu</au><au>Liu, Qidong</au><au>Ye, Yongchao</au><au>Chen, Wei</au><au>Zhang, Zijian</au><au>Wei, Xuetao</au><au>Liang, Yuxuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model</atitle><jtitle>arXiv.org</jtitle><date>2024-04-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Generating trajectory data is among promising solutions to addressing privacy concerns, collection costs, and proprietary restrictions usually associated with human mobility analyses. However, existing trajectory generation methods are still in their infancy due to the inherent diversity and unpredictability of human activities, grappling with issues such as fidelity, flexibility, and generalizability. To overcome these obstacles, we propose ControlTraj, a Controllable Trajectory generation framework with the topology-constrained diffusion model. Distinct from prior approaches, ControlTraj utilizes a diffusion model to generate high-fidelity trajectories while integrating the structural constraints of road network topology to guide the geographical outcomes. Specifically, we develop a novel road segment autoencoder to extract fine-grained road segment embedding. The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture, named GeoUNet, to synthesize geographic trajectories from white noise. Through experimentation across three real-world data settings, ControlTraj demonstrates its ability to produce human-directed, high-fidelity trajectory generation with adaptability to unexplored geographical contexts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3045973830 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Constraints Controllability Cost analysis Geography Network topologies Roads Segments Trajectory analysis Trajectory control White noise |
title | ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ControlTraj:%20Controllable%20Trajectory%20Generation%20with%20Topology-Constrained%20Diffusion%20Model&rft.jtitle=arXiv.org&rft.au=Zhu,%20Yuanshao&rft.date=2024-04-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3045973830%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30459738303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3045973830&rft_id=info:pmid/&rfr_iscdi=true |