Loading…

Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO

Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2024-04, Vol.14 (4), p.218
Main Authors: Ye, Xiaofang, Tian, Yang, Gao, Mengyao, Cheng, Fangjun, Lan, Jinshen, Chen, Han, Lanoue, Mark, Huang, Shengli, Tian, Z. Ryan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3
container_end_page
container_issue 4
container_start_page 218
container_title Catalysts
container_volume 14
creator Ye, Xiaofang
Tian, Yang
Gao, Mengyao
Cheng, Fangjun
Lan, Jinshen
Chen, Han
Lanoue, Mark
Huang, Shengli
Tian, Z. Ryan
description Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.
doi_str_mv 10.3390/catal14040218
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3046677325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793063101</galeid><sourcerecordid>A793063101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3</originalsourceid><addsrcrecordid>eNptkc9KAzEQxoMoWGqP3hc8bzvZZLO7x1JqKxQrtJ5DNn9synZTkxTpzXfwDX0SVyuo4MxhhuH3fXP4ELrGMCSkgpEUUTSYAoUMl2eol0FBUkooPf-1X6JBCFvoqsKkxHkPzafGWGl1G5OHjYvuy-YYrUwmzuv317fVRjdNsjq2caODDYkzydpG0Yqok3vRuhfr9cjPllfowogm6MH37KPH2-l6Mk8Xy9ndZLxIJcmKmBKZK6kFEyWAJiRj1FR1LSsoWa1YXdECFAhWU8iVwpJhbZRkLKN5VihZ1KSPbk6-e--eDzpEvnUH33YvOQHKWFGQLP-hnkSjuW2Ni17InQ2Sj4uKACMYcEcN_6G6VnpnpWu1sd39jyA9CaR3IXht-N7bnfBHjoF_xsD_xEA-APWCejI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046677325</pqid></control><display><type>article</type><title>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</title><source>Publicly Available Content Database</source><creator>Ye, Xiaofang ; Tian, Yang ; Gao, Mengyao ; Cheng, Fangjun ; Lan, Jinshen ; Chen, Han ; Lanoue, Mark ; Huang, Shengli ; Tian, Z. Ryan</creator><creatorcontrib>Ye, Xiaofang ; Tian, Yang ; Gao, Mengyao ; Cheng, Fangjun ; Lan, Jinshen ; Chen, Han ; Lanoue, Mark ; Huang, Shengli ; Tian, Z. Ryan</creatorcontrib><description>Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal14040218</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption ; Analysis ; Carrier mobility ; Charge transfer ; Chemical synthesis ; Composite materials ; Core-shell structure ; Current carriers ; Efficiency ; Electric properties ; Energy conversion efficiency ; Graphene ; Mechanical properties ; Methods ; Morphology ; Nanocomposites ; Nanoparticles ; Nanowires ; Numerical analysis ; Oxides ; Photocatalysis ; Photoelectric effect ; Solar energy ; Solar energy conversion ; Specific surface ; Spectrum analysis ; Structure ; Surface area ; Surface chemistry ; Synthesis ; Titanates ; Wide bandgap semiconductors</subject><ispartof>Catalysts, 2024-04, Vol.14 (4), p.218</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3</cites><orcidid>0009-0004-9347-1342 ; 0000-0003-1949-8761 ; 0009-0009-2779-1803 ; 0000-0001-5955-2887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046677325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046677325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ye, Xiaofang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Gao, Mengyao</creatorcontrib><creatorcontrib>Cheng, Fangjun</creatorcontrib><creatorcontrib>Lan, Jinshen</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Lanoue, Mark</creatorcontrib><creatorcontrib>Huang, Shengli</creatorcontrib><creatorcontrib>Tian, Z. Ryan</creatorcontrib><title>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</title><title>Catalysts</title><description>Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.</description><subject>Absorption</subject><subject>Analysis</subject><subject>Carrier mobility</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Core-shell structure</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>Electric properties</subject><subject>Energy conversion efficiency</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Numerical analysis</subject><subject>Oxides</subject><subject>Photocatalysis</subject><subject>Photoelectric effect</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Specific surface</subject><subject>Spectrum analysis</subject><subject>Structure</subject><subject>Surface area</subject><subject>Surface chemistry</subject><subject>Synthesis</subject><subject>Titanates</subject><subject>Wide bandgap semiconductors</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc9KAzEQxoMoWGqP3hc8bzvZZLO7x1JqKxQrtJ5DNn9synZTkxTpzXfwDX0SVyuo4MxhhuH3fXP4ELrGMCSkgpEUUTSYAoUMl2eol0FBUkooPf-1X6JBCFvoqsKkxHkPzafGWGl1G5OHjYvuy-YYrUwmzuv317fVRjdNsjq2caODDYkzydpG0Yqok3vRuhfr9cjPllfowogm6MH37KPH2-l6Mk8Xy9ndZLxIJcmKmBKZK6kFEyWAJiRj1FR1LSsoWa1YXdECFAhWU8iVwpJhbZRkLKN5VihZ1KSPbk6-e--eDzpEvnUH33YvOQHKWFGQLP-hnkSjuW2Ni17InQ2Sj4uKACMYcEcN_6G6VnpnpWu1sd39jyA9CaR3IXht-N7bnfBHjoF_xsD_xEA-APWCejI</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ye, Xiaofang</creator><creator>Tian, Yang</creator><creator>Gao, Mengyao</creator><creator>Cheng, Fangjun</creator><creator>Lan, Jinshen</creator><creator>Chen, Han</creator><creator>Lanoue, Mark</creator><creator>Huang, Shengli</creator><creator>Tian, Z. Ryan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0004-9347-1342</orcidid><orcidid>https://orcid.org/0000-0003-1949-8761</orcidid><orcidid>https://orcid.org/0009-0009-2779-1803</orcidid><orcidid>https://orcid.org/0000-0001-5955-2887</orcidid></search><sort><creationdate>20240401</creationdate><title>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</title><author>Ye, Xiaofang ; Tian, Yang ; Gao, Mengyao ; Cheng, Fangjun ; Lan, Jinshen ; Chen, Han ; Lanoue, Mark ; Huang, Shengli ; Tian, Z. Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Analysis</topic><topic>Carrier mobility</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Core-shell structure</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>Electric properties</topic><topic>Energy conversion efficiency</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Numerical analysis</topic><topic>Oxides</topic><topic>Photocatalysis</topic><topic>Photoelectric effect</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Specific surface</topic><topic>Spectrum analysis</topic><topic>Structure</topic><topic>Surface area</topic><topic>Surface chemistry</topic><topic>Synthesis</topic><topic>Titanates</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xiaofang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Gao, Mengyao</creatorcontrib><creatorcontrib>Cheng, Fangjun</creatorcontrib><creatorcontrib>Lan, Jinshen</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Lanoue, Mark</creatorcontrib><creatorcontrib>Huang, Shengli</creatorcontrib><creatorcontrib>Tian, Z. Ryan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Xiaofang</au><au>Tian, Yang</au><au>Gao, Mengyao</au><au>Cheng, Fangjun</au><au>Lan, Jinshen</au><au>Chen, Han</au><au>Lanoue, Mark</au><au>Huang, Shengli</au><au>Tian, Z. Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</atitle><jtitle>Catalysts</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>218</spage><pages>218-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal14040218</doi><orcidid>https://orcid.org/0009-0004-9347-1342</orcidid><orcidid>https://orcid.org/0000-0003-1949-8761</orcidid><orcidid>https://orcid.org/0009-0009-2779-1803</orcidid><orcidid>https://orcid.org/0000-0001-5955-2887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2024-04, Vol.14 (4), p.218
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_3046677325
source Publicly Available Content Database
subjects Absorption
Analysis
Carrier mobility
Charge transfer
Chemical synthesis
Composite materials
Core-shell structure
Current carriers
Efficiency
Electric properties
Energy conversion efficiency
Graphene
Mechanical properties
Methods
Morphology
Nanocomposites
Nanoparticles
Nanowires
Numerical analysis
Oxides
Photocatalysis
Photoelectric effect
Solar energy
Solar energy conversion
Specific surface
Spectrum analysis
Structure
Surface area
Surface chemistry
Synthesis
Titanates
Wide bandgap semiconductors
title Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Photocatalytic%20Core%E2%80%93Shell%20Synthesis%20of%20Titanate%20Nanowire/rGO&rft.jtitle=Catalysts&rft.au=Ye,%20Xiaofang&rft.date=2024-04-01&rft.volume=14&rft.issue=4&rft.spage=218&rft.pages=218-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal14040218&rft_dat=%3Cgale_proqu%3EA793063101%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046677325&rft_id=info:pmid/&rft_galeid=A793063101&rfr_iscdi=true