Loading…
Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO
Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a...
Saved in:
Published in: | Catalysts 2024-04, Vol.14 (4), p.218 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3 |
container_end_page | |
container_issue | 4 |
container_start_page | 218 |
container_title | Catalysts |
container_volume | 14 |
creator | Ye, Xiaofang Tian, Yang Gao, Mengyao Cheng, Fangjun Lan, Jinshen Chen, Han Lanoue, Mark Huang, Shengli Tian, Z. Ryan |
description | Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis. |
doi_str_mv | 10.3390/catal14040218 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3046677325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793063101</galeid><sourcerecordid>A793063101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3</originalsourceid><addsrcrecordid>eNptkc9KAzEQxoMoWGqP3hc8bzvZZLO7x1JqKxQrtJ5DNn9synZTkxTpzXfwDX0SVyuo4MxhhuH3fXP4ELrGMCSkgpEUUTSYAoUMl2eol0FBUkooPf-1X6JBCFvoqsKkxHkPzafGWGl1G5OHjYvuy-YYrUwmzuv317fVRjdNsjq2caODDYkzydpG0Yqok3vRuhfr9cjPllfowogm6MH37KPH2-l6Mk8Xy9ndZLxIJcmKmBKZK6kFEyWAJiRj1FR1LSsoWa1YXdECFAhWU8iVwpJhbZRkLKN5VihZ1KSPbk6-e--eDzpEvnUH33YvOQHKWFGQLP-hnkSjuW2Ni17InQ2Sj4uKACMYcEcN_6G6VnpnpWu1sd39jyA9CaR3IXht-N7bnfBHjoF_xsD_xEA-APWCejI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046677325</pqid></control><display><type>article</type><title>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</title><source>Publicly Available Content Database</source><creator>Ye, Xiaofang ; Tian, Yang ; Gao, Mengyao ; Cheng, Fangjun ; Lan, Jinshen ; Chen, Han ; Lanoue, Mark ; Huang, Shengli ; Tian, Z. Ryan</creator><creatorcontrib>Ye, Xiaofang ; Tian, Yang ; Gao, Mengyao ; Cheng, Fangjun ; Lan, Jinshen ; Chen, Han ; Lanoue, Mark ; Huang, Shengli ; Tian, Z. Ryan</creatorcontrib><description>Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal14040218</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption ; Analysis ; Carrier mobility ; Charge transfer ; Chemical synthesis ; Composite materials ; Core-shell structure ; Current carriers ; Efficiency ; Electric properties ; Energy conversion efficiency ; Graphene ; Mechanical properties ; Methods ; Morphology ; Nanocomposites ; Nanoparticles ; Nanowires ; Numerical analysis ; Oxides ; Photocatalysis ; Photoelectric effect ; Solar energy ; Solar energy conversion ; Specific surface ; Spectrum analysis ; Structure ; Surface area ; Surface chemistry ; Synthesis ; Titanates ; Wide bandgap semiconductors</subject><ispartof>Catalysts, 2024-04, Vol.14 (4), p.218</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3</cites><orcidid>0009-0004-9347-1342 ; 0000-0003-1949-8761 ; 0009-0009-2779-1803 ; 0000-0001-5955-2887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046677325/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046677325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ye, Xiaofang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Gao, Mengyao</creatorcontrib><creatorcontrib>Cheng, Fangjun</creatorcontrib><creatorcontrib>Lan, Jinshen</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Lanoue, Mark</creatorcontrib><creatorcontrib>Huang, Shengli</creatorcontrib><creatorcontrib>Tian, Z. Ryan</creatorcontrib><title>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</title><title>Catalysts</title><description>Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.</description><subject>Absorption</subject><subject>Analysis</subject><subject>Carrier mobility</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Composite materials</subject><subject>Core-shell structure</subject><subject>Current carriers</subject><subject>Efficiency</subject><subject>Electric properties</subject><subject>Energy conversion efficiency</subject><subject>Graphene</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Numerical analysis</subject><subject>Oxides</subject><subject>Photocatalysis</subject><subject>Photoelectric effect</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Specific surface</subject><subject>Spectrum analysis</subject><subject>Structure</subject><subject>Surface area</subject><subject>Surface chemistry</subject><subject>Synthesis</subject><subject>Titanates</subject><subject>Wide bandgap semiconductors</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkc9KAzEQxoMoWGqP3hc8bzvZZLO7x1JqKxQrtJ5DNn9synZTkxTpzXfwDX0SVyuo4MxhhuH3fXP4ELrGMCSkgpEUUTSYAoUMl2eol0FBUkooPf-1X6JBCFvoqsKkxHkPzafGWGl1G5OHjYvuy-YYrUwmzuv317fVRjdNsjq2caODDYkzydpG0Yqok3vRuhfr9cjPllfowogm6MH37KPH2-l6Mk8Xy9ndZLxIJcmKmBKZK6kFEyWAJiRj1FR1LSsoWa1YXdECFAhWU8iVwpJhbZRkLKN5VihZ1KSPbk6-e--eDzpEvnUH33YvOQHKWFGQLP-hnkSjuW2Ni17InQ2Sj4uKACMYcEcN_6G6VnpnpWu1sd39jyA9CaR3IXht-N7bnfBHjoF_xsD_xEA-APWCejI</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ye, Xiaofang</creator><creator>Tian, Yang</creator><creator>Gao, Mengyao</creator><creator>Cheng, Fangjun</creator><creator>Lan, Jinshen</creator><creator>Chen, Han</creator><creator>Lanoue, Mark</creator><creator>Huang, Shengli</creator><creator>Tian, Z. Ryan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0004-9347-1342</orcidid><orcidid>https://orcid.org/0000-0003-1949-8761</orcidid><orcidid>https://orcid.org/0009-0009-2779-1803</orcidid><orcidid>https://orcid.org/0000-0001-5955-2887</orcidid></search><sort><creationdate>20240401</creationdate><title>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</title><author>Ye, Xiaofang ; Tian, Yang ; Gao, Mengyao ; Cheng, Fangjun ; Lan, Jinshen ; Chen, Han ; Lanoue, Mark ; Huang, Shengli ; Tian, Z. Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption</topic><topic>Analysis</topic><topic>Carrier mobility</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Composite materials</topic><topic>Core-shell structure</topic><topic>Current carriers</topic><topic>Efficiency</topic><topic>Electric properties</topic><topic>Energy conversion efficiency</topic><topic>Graphene</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Numerical analysis</topic><topic>Oxides</topic><topic>Photocatalysis</topic><topic>Photoelectric effect</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Specific surface</topic><topic>Spectrum analysis</topic><topic>Structure</topic><topic>Surface area</topic><topic>Surface chemistry</topic><topic>Synthesis</topic><topic>Titanates</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Xiaofang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Gao, Mengyao</creatorcontrib><creatorcontrib>Cheng, Fangjun</creatorcontrib><creatorcontrib>Lan, Jinshen</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Lanoue, Mark</creatorcontrib><creatorcontrib>Huang, Shengli</creatorcontrib><creatorcontrib>Tian, Z. Ryan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Xiaofang</au><au>Tian, Yang</au><au>Gao, Mengyao</au><au>Cheng, Fangjun</au><au>Lan, Jinshen</au><au>Chen, Han</au><au>Lanoue, Mark</au><au>Huang, Shengli</au><au>Tian, Z. Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO</atitle><jtitle>Catalysts</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>218</spage><pages>218-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>Wide bandgap semiconductor-based photocatalysts are usually limited by their low solar energy conversion efficiency due to their limited absorption solar wavelength, their rapid surface recombination of the photogenerated electron–hole pairs, and their low charge-carrier mobility. Here, we report a novel stepwise solution synthesis for achieving a new photocatalytic core–shell consisting of a titanate nanowire/reduced graphene oxide shell (or titanate/rGO) 1D-nanocomposite. The new core–shell nanocomposite maximized the specific surface area, largely reduced the charge transfer resistance and reaction energy barrier, and significantly improved the absorption of visible light. The core–shell nanocomposites’ large on/off current ratio and rapid photo-responses boosted the photocurrent by 30.0%, the photocatalysis rate by 50.0%, and the specific surface area by 16.4% when compared with the results for the pure titanate nanowire core. Our numerical simulations support the effective charge separation on the new core–shell nanostructure, which can help further advance the novel photocatalysis.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal14040218</doi><orcidid>https://orcid.org/0009-0004-9347-1342</orcidid><orcidid>https://orcid.org/0000-0003-1949-8761</orcidid><orcidid>https://orcid.org/0009-0009-2779-1803</orcidid><orcidid>https://orcid.org/0000-0001-5955-2887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2024-04, Vol.14 (4), p.218 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_proquest_journals_3046677325 |
source | Publicly Available Content Database |
subjects | Absorption Analysis Carrier mobility Charge transfer Chemical synthesis Composite materials Core-shell structure Current carriers Efficiency Electric properties Energy conversion efficiency Graphene Mechanical properties Methods Morphology Nanocomposites Nanoparticles Nanowires Numerical analysis Oxides Photocatalysis Photoelectric effect Solar energy Solar energy conversion Specific surface Spectrum analysis Structure Surface area Surface chemistry Synthesis Titanates Wide bandgap semiconductors |
title | Efficient Photocatalytic Core–Shell Synthesis of Titanate Nanowire/rGO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Photocatalytic%20Core%E2%80%93Shell%20Synthesis%20of%20Titanate%20Nanowire/rGO&rft.jtitle=Catalysts&rft.au=Ye,%20Xiaofang&rft.date=2024-04-01&rft.volume=14&rft.issue=4&rft.spage=218&rft.pages=218-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal14040218&rft_dat=%3Cgale_proqu%3EA793063101%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3c5dcea6a800e33264f9bbc9086bd6b9470d0a6b405dd1c61efdc6624527dc7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046677325&rft_id=info:pmid/&rft_galeid=A793063101&rfr_iscdi=true |