Loading…

Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds

The Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid process has the combined advantages of standalone TIG and MIG welding processes. This study investigates the thermal distribution of the TIG-MIG hybrid welding process compared to the standalone TIG and MIG welding processes. The welds' me...

Full description

Saved in:
Bibliographic Details
Published in:International journal on interactive design and manufacturing 2024-04, Vol.18 (3), p.1171-1181
Main Authors: Abima, Cynthia Samuel, Madushele, Nkosinathi, Mwema, Fredrick Madaraka, Akinlabi, Stephen Akinwale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3
cites cdi_FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3
container_end_page 1181
container_issue 3
container_start_page 1171
container_title International journal on interactive design and manufacturing
container_volume 18
creator Abima, Cynthia Samuel
Madushele, Nkosinathi
Mwema, Fredrick Madaraka
Akinlabi, Stephen Akinwale
description The Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid process has the combined advantages of standalone TIG and MIG welding processes. This study investigates the thermal distribution of the TIG-MIG hybrid welding process compared to the standalone TIG and MIG welding processes. The welds' mechanical properties, microstructural evolution, and phase formation are also discussed. The process parameters for the TIG-MIG, TIG and MIG welding processes used in this study were obtained from prior parametric optimisation for each welding process performed by the Taguchi method with an L-9 orthogonal matrix. The thermal behaviour of TIG, MIG and TIG-MIG welds were investigated by adopting the Gaussian heat source model on the ANSYS workbench. The simulated temperature distributions of the three weld types were validated by the mechanical, microstructural, and phase formation characteristics as obtained experimentally. Similar temperature profiles were observed for all weld types having peak temperatures at the weld seams. The simulated temperature distributions were in good correlation with the experimentally obtained the hardness results, microstructural evolution and phase formation, as revealed from the X-ray diffraction analysis. Hence, the Gaussian heat source model can accurately simulate the properties of a complex heat source interaction, allowing for process optimisation and forecasting.
doi_str_mv 10.1007/s12008-022-01173-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046731547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046731547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3</originalsourceid><addsrcrecordid>eNqFkEFPwyAYhonRxDn9A55IvIp-lFLo0SyzLpnxMs-EtuBYunZCG92_l61Gb3ri4-N5X5IHoWsKdxRA3AeaAEgCSUKAUsFIfoImNOecJBz46c9M2Tm6CGEDkEmQMEHr-efOeLc1ba8brNsaW9e63mDTmMMSB7cdGt27rsW287hfG7-NZO1C7105HB9ci1eL4hY_L4pjRbyQw7zel97V-MM0dbhEZ1Y3wVx9n1P0-jhfzZ7I8qVYzB6WpGKp6EkltBSsNlpnMmO6NAxkCUJqUdZZLYWmpeQs43lq07hLrOBc5MYKSamtTMmm6Gbs3fnufTChV5tu8G38UjFIM8EoT8V_FI2dOUQqGanKdyF4Y9UuqtJ-ryiog3c1elfRuzp6V3kMsTEUIty-Gf9b_UfqCyVZhIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046157990</pqid></control><display><type>article</type><title>Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds</title><source>Springer Link</source><creator>Abima, Cynthia Samuel ; Madushele, Nkosinathi ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen Akinwale</creator><creatorcontrib>Abima, Cynthia Samuel ; Madushele, Nkosinathi ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen Akinwale</creatorcontrib><description>The Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid process has the combined advantages of standalone TIG and MIG welding processes. This study investigates the thermal distribution of the TIG-MIG hybrid welding process compared to the standalone TIG and MIG welding processes. The welds' mechanical properties, microstructural evolution, and phase formation are also discussed. The process parameters for the TIG-MIG, TIG and MIG welding processes used in this study were obtained from prior parametric optimisation for each welding process performed by the Taguchi method with an L-9 orthogonal matrix. The thermal behaviour of TIG, MIG and TIG-MIG welds were investigated by adopting the Gaussian heat source model on the ANSYS workbench. The simulated temperature distributions of the three weld types were validated by the mechanical, microstructural, and phase formation characteristics as obtained experimentally. Similar temperature profiles were observed for all weld types having peak temperatures at the weld seams. The simulated temperature distributions were in good correlation with the experimentally obtained the hardness results, microstructural evolution and phase formation, as revealed from the X-ray diffraction analysis. Hence, the Gaussian heat source model can accurately simulate the properties of a complex heat source interaction, allowing for process optimisation and forecasting.</description><identifier>ISSN: 1955-2513</identifier><identifier>EISSN: 1955-2505</identifier><identifier>DOI: 10.1007/s12008-022-01173-9</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Electronics and Microelectronics ; Engineering ; Engineering Design ; Evolution ; Finite element method ; Friction stir welding ; Gas metal arc welding ; Gas tungsten arc welding ; Industrial Design ; Instrumentation ; Investigations ; Lasers ; Mechanical Engineering ; Mechanical properties ; Optimization ; Original Paper ; Process parameters ; Rare gases ; Residual stress ; Seam welds ; Simulation ; Taguchi methods ; Temperature ; Temperature profiles ; Tensile strength ; Thermal simulation ; Thermodynamic properties ; Yield stress</subject><ispartof>International journal on interactive design and manufacturing, 2024-04, Vol.18 (3), p.1171-1181</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3</citedby><cites>FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3</cites><orcidid>0000-0001-6906-1109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abima, Cynthia Samuel</creatorcontrib><creatorcontrib>Madushele, Nkosinathi</creatorcontrib><creatorcontrib>Mwema, Fredrick Madaraka</creatorcontrib><creatorcontrib>Akinlabi, Stephen Akinwale</creatorcontrib><title>Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds</title><title>International journal on interactive design and manufacturing</title><addtitle>Int J Interact Des Manuf</addtitle><description>The Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid process has the combined advantages of standalone TIG and MIG welding processes. This study investigates the thermal distribution of the TIG-MIG hybrid welding process compared to the standalone TIG and MIG welding processes. The welds' mechanical properties, microstructural evolution, and phase formation are also discussed. The process parameters for the TIG-MIG, TIG and MIG welding processes used in this study were obtained from prior parametric optimisation for each welding process performed by the Taguchi method with an L-9 orthogonal matrix. The thermal behaviour of TIG, MIG and TIG-MIG welds were investigated by adopting the Gaussian heat source model on the ANSYS workbench. The simulated temperature distributions of the three weld types were validated by the mechanical, microstructural, and phase formation characteristics as obtained experimentally. Similar temperature profiles were observed for all weld types having peak temperatures at the weld seams. The simulated temperature distributions were in good correlation with the experimentally obtained the hardness results, microstructural evolution and phase formation, as revealed from the X-ray diffraction analysis. Hence, the Gaussian heat source model can accurately simulate the properties of a complex heat source interaction, allowing for process optimisation and forecasting.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Evolution</subject><subject>Finite element method</subject><subject>Friction stir welding</subject><subject>Gas metal arc welding</subject><subject>Gas tungsten arc welding</subject><subject>Industrial Design</subject><subject>Instrumentation</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Process parameters</subject><subject>Rare gases</subject><subject>Residual stress</subject><subject>Seam welds</subject><subject>Simulation</subject><subject>Taguchi methods</subject><subject>Temperature</subject><subject>Temperature profiles</subject><subject>Tensile strength</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><subject>Yield stress</subject><issn>1955-2513</issn><issn>1955-2505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwyAYhonRxDn9A55IvIp-lFLo0SyzLpnxMs-EtuBYunZCG92_l61Gb3ri4-N5X5IHoWsKdxRA3AeaAEgCSUKAUsFIfoImNOecJBz46c9M2Tm6CGEDkEmQMEHr-efOeLc1ba8brNsaW9e63mDTmMMSB7cdGt27rsW287hfG7-NZO1C7105HB9ci1eL4hY_L4pjRbyQw7zel97V-MM0dbhEZ1Y3wVx9n1P0-jhfzZ7I8qVYzB6WpGKp6EkltBSsNlpnMmO6NAxkCUJqUdZZLYWmpeQs43lq07hLrOBc5MYKSamtTMmm6Gbs3fnufTChV5tu8G38UjFIM8EoT8V_FI2dOUQqGanKdyF4Y9UuqtJ-ryiog3c1elfRuzp6V3kMsTEUIty-Gf9b_UfqCyVZhIQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Abima, Cynthia Samuel</creator><creator>Madushele, Nkosinathi</creator><creator>Mwema, Fredrick Madaraka</creator><creator>Akinlabi, Stephen Akinwale</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6906-1109</orcidid></search><sort><creationdate>20240401</creationdate><title>Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds</title><author>Abima, Cynthia Samuel ; Madushele, Nkosinathi ; Mwema, Fredrick Madaraka ; Akinlabi, Stephen Akinwale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Evolution</topic><topic>Finite element method</topic><topic>Friction stir welding</topic><topic>Gas metal arc welding</topic><topic>Gas tungsten arc welding</topic><topic>Industrial Design</topic><topic>Instrumentation</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Process parameters</topic><topic>Rare gases</topic><topic>Residual stress</topic><topic>Seam welds</topic><topic>Simulation</topic><topic>Taguchi methods</topic><topic>Temperature</topic><topic>Temperature profiles</topic><topic>Tensile strength</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abima, Cynthia Samuel</creatorcontrib><creatorcontrib>Madushele, Nkosinathi</creatorcontrib><creatorcontrib>Mwema, Fredrick Madaraka</creatorcontrib><creatorcontrib>Akinlabi, Stephen Akinwale</creatorcontrib><collection>CrossRef</collection><jtitle>International journal on interactive design and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abima, Cynthia Samuel</au><au>Madushele, Nkosinathi</au><au>Mwema, Fredrick Madaraka</au><au>Akinlabi, Stephen Akinwale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds</atitle><jtitle>International journal on interactive design and manufacturing</jtitle><stitle>Int J Interact Des Manuf</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>1171</spage><epage>1181</epage><pages>1171-1181</pages><issn>1955-2513</issn><eissn>1955-2505</eissn><abstract>The Tungsten Inert Gas-Metal Inert Gas (TIG-MIG) hybrid process has the combined advantages of standalone TIG and MIG welding processes. This study investigates the thermal distribution of the TIG-MIG hybrid welding process compared to the standalone TIG and MIG welding processes. The welds' mechanical properties, microstructural evolution, and phase formation are also discussed. The process parameters for the TIG-MIG, TIG and MIG welding processes used in this study were obtained from prior parametric optimisation for each welding process performed by the Taguchi method with an L-9 orthogonal matrix. The thermal behaviour of TIG, MIG and TIG-MIG welds were investigated by adopting the Gaussian heat source model on the ANSYS workbench. The simulated temperature distributions of the three weld types were validated by the mechanical, microstructural, and phase formation characteristics as obtained experimentally. Similar temperature profiles were observed for all weld types having peak temperatures at the weld seams. The simulated temperature distributions were in good correlation with the experimentally obtained the hardness results, microstructural evolution and phase formation, as revealed from the X-ray diffraction analysis. Hence, the Gaussian heat source model can accurately simulate the properties of a complex heat source interaction, allowing for process optimisation and forecasting.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12008-022-01173-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6906-1109</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1955-2513
ispartof International journal on interactive design and manufacturing, 2024-04, Vol.18 (3), p.1171-1181
issn 1955-2513
1955-2505
language eng
recordid cdi_proquest_journals_3046731547
source Springer Link
subjects CAE) and Design
Computer-Aided Engineering (CAD
Electronics and Microelectronics
Engineering
Engineering Design
Evolution
Finite element method
Friction stir welding
Gas metal arc welding
Gas tungsten arc welding
Industrial Design
Instrumentation
Investigations
Lasers
Mechanical Engineering
Mechanical properties
Optimization
Original Paper
Process parameters
Rare gases
Residual stress
Seam welds
Simulation
Taguchi methods
Temperature
Temperature profiles
Tensile strength
Thermal simulation
Thermodynamic properties
Yield stress
title Experimental and finite element simulation for thermal distribution in TIG, MIG and TIG-MIG hybrid welds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20finite%20element%20simulation%20for%20thermal%20distribution%20in%20TIG,%20MIG%20and%20TIG-MIG%20hybrid%20welds&rft.jtitle=International%20journal%20on%20interactive%20design%20and%20manufacturing&rft.au=Abima,%20Cynthia%20Samuel&rft.date=2024-04-01&rft.volume=18&rft.issue=3&rft.spage=1171&rft.epage=1181&rft.pages=1171-1181&rft.issn=1955-2513&rft.eissn=1955-2505&rft_id=info:doi/10.1007/s12008-022-01173-9&rft_dat=%3Cproquest_cross%3E3046731547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-c7a873deaa6863abe308b078a7bd6d87a1b8536594f4a7b2f75579ef7811fceb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046157990&rft_id=info:pmid/&rfr_iscdi=true