Loading…
Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network
This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure t...
Saved in:
Published in: | Electronics (Basel) 2024-04, Vol.13 (8), p.1576 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13 |
container_end_page | |
container_issue | 8 |
container_start_page | 1576 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Li, Lin Yuan, Xiaoxi Zhang, Feng Chen, Chaobo |
description | This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays. |
doi_str_mv | 10.3390/electronics13081576 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3046898127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793095634</galeid><sourcerecordid>A793095634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13</originalsourceid><addsrcrecordid>eNptUcFOwzAMrRBITLAv4BKJc0fSdG1zHGODSRMgxM5VljpVRpZsTju0vycwDhywD8-y3rP89JLkhtER54LegQXVoXdGBcZpxcZlcZYMMlqKVGQiO_8zXybDEDY0lmC84nSQ4GK7Q3-AhsxlbzvyYGTrfDCBeE3evLWA5B4kGtcGsgoRiHRktu-lTSeutUAWroMWMH0FNL4hE0R5JFPvDt72nfFOWvIMPf5A9-nx4zq50NIGGP7iVbKaz96nT-ny5XExnSxTxRnrUjnWYl2xMtcqr9Z5xhrJFEgJ61JxXqwzWpTRgwLBeWQ2SjUN1UDzsgFRaMavktvT3Whw30Po6o3vMf4Tak7zohIVy8rIGp1YrbRQG6d9h1LFbmBrlHegTdxPSsGpGBc8jwJ-Eij0ISDoeodmK_FYM1p_B1L_Ewj_An2Qgxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046898127</pqid></control><display><type>article</type><title>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</title><source>Publicly Available Content Database</source><creator>Li, Lin ; Yuan, Xiaoxi ; Zhang, Feng ; Chen, Chaobo</creator><creatorcontrib>Li, Lin ; Yuan, Xiaoxi ; Zhang, Feng ; Chen, Chaobo</creatorcontrib><description>This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13081576</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arrays ; Artificial neural networks ; Bearings ; Big Data ; Classification ; Cluster analysis ; Data points ; Deep learning ; Fault diagnosis ; Fuzzy logic ; Integers ; Matrices (mathematics) ; Methods ; Neural networks ; Pattern recognition ; Performance indices ; Roller bearings ; Rotation ; Sampling techniques ; Signal processing ; Support vector machines</subject><ispartof>Electronics (Basel), 2024-04, Vol.13 (8), p.1576</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13</cites><orcidid>0000-0002-9272-3104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046898127/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046898127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Yuan, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Chen, Chaobo</creatorcontrib><title>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</title><title>Electronics (Basel)</title><description>This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.</description><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Bearings</subject><subject>Big Data</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Data points</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Fuzzy logic</subject><subject>Integers</subject><subject>Matrices (mathematics)</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Performance indices</subject><subject>Roller bearings</subject><subject>Rotation</subject><subject>Sampling techniques</subject><subject>Signal processing</subject><subject>Support vector machines</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUcFOwzAMrRBITLAv4BKJc0fSdG1zHGODSRMgxM5VljpVRpZsTju0vycwDhywD8-y3rP89JLkhtER54LegQXVoXdGBcZpxcZlcZYMMlqKVGQiO_8zXybDEDY0lmC84nSQ4GK7Q3-AhsxlbzvyYGTrfDCBeE3evLWA5B4kGtcGsgoRiHRktu-lTSeutUAWroMWMH0FNL4hE0R5JFPvDt72nfFOWvIMPf5A9-nx4zq50NIGGP7iVbKaz96nT-ny5XExnSxTxRnrUjnWYl2xMtcqr9Z5xhrJFEgJ61JxXqwzWpTRgwLBeWQ2SjUN1UDzsgFRaMavktvT3Whw30Po6o3vMf4Tak7zohIVy8rIGp1YrbRQG6d9h1LFbmBrlHegTdxPSsGpGBc8jwJ-Eij0ISDoeodmK_FYM1p_B1L_Ewj_An2Qgxw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Li, Lin</creator><creator>Yuan, Xiaoxi</creator><creator>Zhang, Feng</creator><creator>Chen, Chaobo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9272-3104</orcidid></search><sort><creationdate>20240401</creationdate><title>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</title><author>Li, Lin ; Yuan, Xiaoxi ; Zhang, Feng ; Chen, Chaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Bearings</topic><topic>Big Data</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Data points</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Fuzzy logic</topic><topic>Integers</topic><topic>Matrices (mathematics)</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Performance indices</topic><topic>Roller bearings</topic><topic>Rotation</topic><topic>Sampling techniques</topic><topic>Signal processing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Yuan, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Chen, Chaobo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lin</au><au>Yuan, Xiaoxi</au><au>Zhang, Feng</au><au>Chen, Chaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>13</volume><issue>8</issue><spage>1576</spage><pages>1576-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13081576</doi><orcidid>https://orcid.org/0000-0002-9272-3104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-04, Vol.13 (8), p.1576 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3046898127 |
source | Publicly Available Content Database |
subjects | Arrays Artificial neural networks Bearings Big Data Classification Cluster analysis Data points Deep learning Fault diagnosis Fuzzy logic Integers Matrices (mathematics) Methods Neural networks Pattern recognition Performance indices Roller bearings Rotation Sampling techniques Signal processing Support vector machines |
title | Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Fault%20Diagnosis%20of%20Roller%20Bearings%20Using%20an%20Equal-Angle%20Integer-Period%20Array%20Convolutional%20Neural%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Li,%20Lin&rft.date=2024-04-01&rft.volume=13&rft.issue=8&rft.spage=1576&rft.pages=1576-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13081576&rft_dat=%3Cgale_proqu%3EA793095634%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046898127&rft_id=info:pmid/&rft_galeid=A793095634&rfr_iscdi=true |