Loading…

Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network

This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure t...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-04, Vol.13 (8), p.1576
Main Authors: Li, Lin, Yuan, Xiaoxi, Zhang, Feng, Chen, Chaobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13
container_end_page
container_issue 8
container_start_page 1576
container_title Electronics (Basel)
container_volume 13
creator Li, Lin
Yuan, Xiaoxi
Zhang, Feng
Chen, Chaobo
description This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.
doi_str_mv 10.3390/electronics13081576
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3046898127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793095634</galeid><sourcerecordid>A793095634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13</originalsourceid><addsrcrecordid>eNptUcFOwzAMrRBITLAv4BKJc0fSdG1zHGODSRMgxM5VljpVRpZsTju0vycwDhywD8-y3rP89JLkhtER54LegQXVoXdGBcZpxcZlcZYMMlqKVGQiO_8zXybDEDY0lmC84nSQ4GK7Q3-AhsxlbzvyYGTrfDCBeE3evLWA5B4kGtcGsgoRiHRktu-lTSeutUAWroMWMH0FNL4hE0R5JFPvDt72nfFOWvIMPf5A9-nx4zq50NIGGP7iVbKaz96nT-ny5XExnSxTxRnrUjnWYl2xMtcqr9Z5xhrJFEgJ61JxXqwzWpTRgwLBeWQ2SjUN1UDzsgFRaMavktvT3Whw30Po6o3vMf4Tak7zohIVy8rIGp1YrbRQG6d9h1LFbmBrlHegTdxPSsGpGBc8jwJ-Eij0ISDoeodmK_FYM1p_B1L_Ewj_An2Qgxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046898127</pqid></control><display><type>article</type><title>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</title><source>Publicly Available Content Database</source><creator>Li, Lin ; Yuan, Xiaoxi ; Zhang, Feng ; Chen, Chaobo</creator><creatorcontrib>Li, Lin ; Yuan, Xiaoxi ; Zhang, Feng ; Chen, Chaobo</creatorcontrib><description>This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13081576</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arrays ; Artificial neural networks ; Bearings ; Big Data ; Classification ; Cluster analysis ; Data points ; Deep learning ; Fault diagnosis ; Fuzzy logic ; Integers ; Matrices (mathematics) ; Methods ; Neural networks ; Pattern recognition ; Performance indices ; Roller bearings ; Rotation ; Sampling techniques ; Signal processing ; Support vector machines</subject><ispartof>Electronics (Basel), 2024-04, Vol.13 (8), p.1576</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13</cites><orcidid>0000-0002-9272-3104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046898127/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046898127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Yuan, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Chen, Chaobo</creatorcontrib><title>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</title><title>Electronics (Basel)</title><description>This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.</description><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Bearings</subject><subject>Big Data</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Data points</subject><subject>Deep learning</subject><subject>Fault diagnosis</subject><subject>Fuzzy logic</subject><subject>Integers</subject><subject>Matrices (mathematics)</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Performance indices</subject><subject>Roller bearings</subject><subject>Rotation</subject><subject>Sampling techniques</subject><subject>Signal processing</subject><subject>Support vector machines</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUcFOwzAMrRBITLAv4BKJc0fSdG1zHGODSRMgxM5VljpVRpZsTju0vycwDhywD8-y3rP89JLkhtER54LegQXVoXdGBcZpxcZlcZYMMlqKVGQiO_8zXybDEDY0lmC84nSQ4GK7Q3-AhsxlbzvyYGTrfDCBeE3evLWA5B4kGtcGsgoRiHRktu-lTSeutUAWroMWMH0FNL4hE0R5JFPvDt72nfFOWvIMPf5A9-nx4zq50NIGGP7iVbKaz96nT-ny5XExnSxTxRnrUjnWYl2xMtcqr9Z5xhrJFEgJ61JxXqwzWpTRgwLBeWQ2SjUN1UDzsgFRaMavktvT3Whw30Po6o3vMf4Tak7zohIVy8rIGp1YrbRQG6d9h1LFbmBrlHegTdxPSsGpGBc8jwJ-Eij0ISDoeodmK_FYM1p_B1L_Ewj_An2Qgxw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Li, Lin</creator><creator>Yuan, Xiaoxi</creator><creator>Zhang, Feng</creator><creator>Chen, Chaobo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9272-3104</orcidid></search><sort><creationdate>20240401</creationdate><title>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</title><author>Li, Lin ; Yuan, Xiaoxi ; Zhang, Feng ; Chen, Chaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Bearings</topic><topic>Big Data</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Data points</topic><topic>Deep learning</topic><topic>Fault diagnosis</topic><topic>Fuzzy logic</topic><topic>Integers</topic><topic>Matrices (mathematics)</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Performance indices</topic><topic>Roller bearings</topic><topic>Rotation</topic><topic>Sampling techniques</topic><topic>Signal processing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Yuan, Xiaoxi</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Chen, Chaobo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lin</au><au>Yuan, Xiaoxi</au><au>Zhang, Feng</au><au>Chen, Chaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>13</volume><issue>8</issue><spage>1576</spage><pages>1576-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This article presents a technique to carry out fault classification using an equal-angle integer-period array convolutional neural network (EAIP-CNN) to process the electrostatic signal of working roller bearings. Firstly, electrostatic signals were collected using uniform angle sampling to ensure the angle intervals between two adjacent data points stayed the same and the signal length was fixed to a pre-determined number of rotation cycles. Then, this one-dimensional signal was transformed into a two-dimensional matrix, where the component of each row was the signal in one period, and the ordinate value of each row represented the corresponding rotation period. Therefore, the row and column indexes of the matrix had a specific meaning instead of simply splitting and stacking the data. Finally, the matrixes were utilized to train the CNN network and test the classification performance. The results show that the classification rate using this technique reaches 95.6%, which is higher than that of 2D CNNs without equal-angle integer-period arrays.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13081576</doi><orcidid>https://orcid.org/0000-0002-9272-3104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-04, Vol.13 (8), p.1576
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3046898127
source Publicly Available Content Database
subjects Arrays
Artificial neural networks
Bearings
Big Data
Classification
Cluster analysis
Data points
Deep learning
Fault diagnosis
Fuzzy logic
Integers
Matrices (mathematics)
Methods
Neural networks
Pattern recognition
Performance indices
Roller bearings
Rotation
Sampling techniques
Signal processing
Support vector machines
title Improved Fault Diagnosis of Roller Bearings Using an Equal-Angle Integer-Period Array Convolutional Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A07%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Fault%20Diagnosis%20of%20Roller%20Bearings%20Using%20an%20Equal-Angle%20Integer-Period%20Array%20Convolutional%20Neural%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Li,%20Lin&rft.date=2024-04-01&rft.volume=13&rft.issue=8&rft.spage=1576&rft.pages=1576-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13081576&rft_dat=%3Cgale_proqu%3EA793095634%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-a5f9b8174fc48b421da1ceaaeb7c336b2067383ce933f9bdccdd0fe047de96f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046898127&rft_id=info:pmid/&rft_galeid=A793095634&rfr_iscdi=true