Loading…
Machine learning studies for liquid crystal texture recognition
Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound e...
Saved in:
Published in: | Liquid crystals 2024-01, Vol.51 (2), p.255-264 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3 |
container_end_page | 264 |
container_issue | 2 |
container_start_page | 255 |
container_title | Liquid crystals |
container_volume | 51 |
creator | Osiecka-Drewniak, Natalia Drzewicz, Anna Juszyńska-Gałązka, Ewa |
description | Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information. |
doi_str_mv | 10.1080/02678292.2023.2292635 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3048303307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048303307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43jqbNNnsSaX4BRUveg7ZbFJTtkmbZNH-e3dpvXqaOTzvO8yD0HUJsxIE3ALhlSA1mREgdEaGjVN2giYl5bxggrFTNBmZYoTO0UVKawCohKgm6O5N6S_nDe6Mit75FU65b51J2IaIO7frXYt13KesOpzNT-6jwdHosPIuu-Av0ZlVXTJXxzlFn0-PH4uXYvn-_Lp4WBaaUpGLhmlGNK3LljfMEKFETZRgomltZUtFobaaggFgwtYwJ5ywVhHCRcUbpXlLp-jm0LuNYdeblOU69NEPJyWFuaBAKVQDxQ6UjiGlaKzcRrdRcS9LkKMr-edKjq7k0dWQuz_knB_e3qjvELtWZrXvQrRRee2GM_9X_AKFzHAK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048303307</pqid></control><display><type>article</type><title>Machine learning studies for liquid crystal texture recognition</title><source>Taylor and Francis Science and Technology Collection</source><creator>Osiecka-Drewniak, Natalia ; Drzewicz, Anna ; Juszyńska-Gałązka, Ewa</creator><creatorcontrib>Osiecka-Drewniak, Natalia ; Drzewicz, Anna ; Juszyńska-Gałązka, Ewa</creatorcontrib><description>Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.</description><identifier>ISSN: 0267-8292</identifier><identifier>EISSN: 1366-5855</identifier><identifier>DOI: 10.1080/02678292.2023.2292635</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; antiferroelectric liquid crystals ; Antiferroelectricity ; Artificial neural networks ; Benzoates ; Datasets ; glass transition ; Liquid crystals ; Machine learning ; neural networks ; Polymorphism ; Self-similarity ; Texture recognition ; Transition temperatures</subject><ispartof>Liquid crystals, 2024-01, Vol.51 (2), p.255-264</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</citedby><cites>FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Osiecka-Drewniak, Natalia</creatorcontrib><creatorcontrib>Drzewicz, Anna</creatorcontrib><creatorcontrib>Juszyńska-Gałązka, Ewa</creatorcontrib><title>Machine learning studies for liquid crystal texture recognition</title><title>Liquid crystals</title><description>Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.</description><subject>Algorithms</subject><subject>antiferroelectric liquid crystals</subject><subject>Antiferroelectricity</subject><subject>Artificial neural networks</subject><subject>Benzoates</subject><subject>Datasets</subject><subject>glass transition</subject><subject>Liquid crystals</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>Polymorphism</subject><subject>Self-similarity</subject><subject>Texture recognition</subject><subject>Transition temperatures</subject><issn>0267-8292</issn><issn>1366-5855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43jqbNNnsSaX4BRUveg7ZbFJTtkmbZNH-e3dpvXqaOTzvO8yD0HUJsxIE3ALhlSA1mREgdEaGjVN2giYl5bxggrFTNBmZYoTO0UVKawCohKgm6O5N6S_nDe6Mit75FU65b51J2IaIO7frXYt13KesOpzNT-6jwdHosPIuu-Av0ZlVXTJXxzlFn0-PH4uXYvn-_Lp4WBaaUpGLhmlGNK3LljfMEKFETZRgomltZUtFobaaggFgwtYwJ5ywVhHCRcUbpXlLp-jm0LuNYdeblOU69NEPJyWFuaBAKVQDxQ6UjiGlaKzcRrdRcS9LkKMr-edKjq7k0dWQuz_knB_e3qjvELtWZrXvQrRRee2GM_9X_AKFzHAK</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Osiecka-Drewniak, Natalia</creator><creator>Drzewicz, Anna</creator><creator>Juszyńska-Gałązka, Ewa</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20240126</creationdate><title>Machine learning studies for liquid crystal texture recognition</title><author>Osiecka-Drewniak, Natalia ; Drzewicz, Anna ; Juszyńska-Gałązka, Ewa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>antiferroelectric liquid crystals</topic><topic>Antiferroelectricity</topic><topic>Artificial neural networks</topic><topic>Benzoates</topic><topic>Datasets</topic><topic>glass transition</topic><topic>Liquid crystals</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>Polymorphism</topic><topic>Self-similarity</topic><topic>Texture recognition</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osiecka-Drewniak, Natalia</creatorcontrib><creatorcontrib>Drzewicz, Anna</creatorcontrib><creatorcontrib>Juszyńska-Gałązka, Ewa</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Liquid crystals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osiecka-Drewniak, Natalia</au><au>Drzewicz, Anna</au><au>Juszyńska-Gałązka, Ewa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning studies for liquid crystal texture recognition</atitle><jtitle>Liquid crystals</jtitle><date>2024-01-26</date><risdate>2024</risdate><volume>51</volume><issue>2</issue><spage>255</spage><epage>264</epage><pages>255-264</pages><issn>0267-8292</issn><eissn>1366-5855</eissn><abstract>Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02678292.2023.2292635</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-8292 |
ispartof | Liquid crystals, 2024-01, Vol.51 (2), p.255-264 |
issn | 0267-8292 1366-5855 |
language | eng |
recordid | cdi_proquest_journals_3048303307 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms antiferroelectric liquid crystals Antiferroelectricity Artificial neural networks Benzoates Datasets glass transition Liquid crystals Machine learning neural networks Polymorphism Self-similarity Texture recognition Transition temperatures |
title | Machine learning studies for liquid crystal texture recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20studies%20for%20liquid%20crystal%20texture%20recognition&rft.jtitle=Liquid%20crystals&rft.au=Osiecka-Drewniak,%20Natalia&rft.date=2024-01-26&rft.volume=51&rft.issue=2&rft.spage=255&rft.epage=264&rft.pages=255-264&rft.issn=0267-8292&rft.eissn=1366-5855&rft_id=info:doi/10.1080/02678292.2023.2292635&rft_dat=%3Cproquest_cross%3E3048303307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3048303307&rft_id=info:pmid/&rfr_iscdi=true |