Loading…

Machine learning studies for liquid crystal texture recognition

Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound e...

Full description

Saved in:
Bibliographic Details
Published in:Liquid crystals 2024-01, Vol.51 (2), p.255-264
Main Authors: Osiecka-Drewniak, Natalia, Drzewicz, Anna, Juszyńska-Gałązka, Ewa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3
cites cdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3
container_end_page 264
container_issue 2
container_start_page 255
container_title Liquid crystals
container_volume 51
creator Osiecka-Drewniak, Natalia
Drzewicz, Anna
Juszyńska-Gałązka, Ewa
description Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.
doi_str_mv 10.1080/02678292.2023.2292635
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3048303307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048303307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43jqbNNnsSaX4BRUveg7ZbFJTtkmbZNH-e3dpvXqaOTzvO8yD0HUJsxIE3ALhlSA1mREgdEaGjVN2giYl5bxggrFTNBmZYoTO0UVKawCohKgm6O5N6S_nDe6Mit75FU65b51J2IaIO7frXYt13KesOpzNT-6jwdHosPIuu-Av0ZlVXTJXxzlFn0-PH4uXYvn-_Lp4WBaaUpGLhmlGNK3LljfMEKFETZRgomltZUtFobaaggFgwtYwJ5ywVhHCRcUbpXlLp-jm0LuNYdeblOU69NEPJyWFuaBAKVQDxQ6UjiGlaKzcRrdRcS9LkKMr-edKjq7k0dWQuz_knB_e3qjvELtWZrXvQrRRee2GM_9X_AKFzHAK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048303307</pqid></control><display><type>article</type><title>Machine learning studies for liquid crystal texture recognition</title><source>Taylor and Francis Science and Technology Collection</source><creator>Osiecka-Drewniak, Natalia ; Drzewicz, Anna ; Juszyńska-Gałązka, Ewa</creator><creatorcontrib>Osiecka-Drewniak, Natalia ; Drzewicz, Anna ; Juszyńska-Gałązka, Ewa</creatorcontrib><description>Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.</description><identifier>ISSN: 0267-8292</identifier><identifier>EISSN: 1366-5855</identifier><identifier>DOI: 10.1080/02678292.2023.2292635</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; antiferroelectric liquid crystals ; Antiferroelectricity ; Artificial neural networks ; Benzoates ; Datasets ; glass transition ; Liquid crystals ; Machine learning ; neural networks ; Polymorphism ; Self-similarity ; Texture recognition ; Transition temperatures</subject><ispartof>Liquid crystals, 2024-01, Vol.51 (2), p.255-264</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</citedby><cites>FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Osiecka-Drewniak, Natalia</creatorcontrib><creatorcontrib>Drzewicz, Anna</creatorcontrib><creatorcontrib>Juszyńska-Gałązka, Ewa</creatorcontrib><title>Machine learning studies for liquid crystal texture recognition</title><title>Liquid crystals</title><description>Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.</description><subject>Algorithms</subject><subject>antiferroelectric liquid crystals</subject><subject>Antiferroelectricity</subject><subject>Artificial neural networks</subject><subject>Benzoates</subject><subject>Datasets</subject><subject>glass transition</subject><subject>Liquid crystals</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>Polymorphism</subject><subject>Self-similarity</subject><subject>Texture recognition</subject><subject>Transition temperatures</subject><issn>0267-8292</issn><issn>1366-5855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43jqbNNnsSaX4BRUveg7ZbFJTtkmbZNH-e3dpvXqaOTzvO8yD0HUJsxIE3ALhlSA1mREgdEaGjVN2giYl5bxggrFTNBmZYoTO0UVKawCohKgm6O5N6S_nDe6Mit75FU65b51J2IaIO7frXYt13KesOpzNT-6jwdHosPIuu-Av0ZlVXTJXxzlFn0-PH4uXYvn-_Lp4WBaaUpGLhmlGNK3LljfMEKFETZRgomltZUtFobaaggFgwtYwJ5ywVhHCRcUbpXlLp-jm0LuNYdeblOU69NEPJyWFuaBAKVQDxQ6UjiGlaKzcRrdRcS9LkKMr-edKjq7k0dWQuz_knB_e3qjvELtWZrXvQrRRee2GM_9X_AKFzHAK</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Osiecka-Drewniak, Natalia</creator><creator>Drzewicz, Anna</creator><creator>Juszyńska-Gałązka, Ewa</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20240126</creationdate><title>Machine learning studies for liquid crystal texture recognition</title><author>Osiecka-Drewniak, Natalia ; Drzewicz, Anna ; Juszyńska-Gałązka, Ewa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>antiferroelectric liquid crystals</topic><topic>Antiferroelectricity</topic><topic>Artificial neural networks</topic><topic>Benzoates</topic><topic>Datasets</topic><topic>glass transition</topic><topic>Liquid crystals</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>Polymorphism</topic><topic>Self-similarity</topic><topic>Texture recognition</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osiecka-Drewniak, Natalia</creatorcontrib><creatorcontrib>Drzewicz, Anna</creatorcontrib><creatorcontrib>Juszyńska-Gałązka, Ewa</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Liquid crystals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osiecka-Drewniak, Natalia</au><au>Drzewicz, Anna</au><au>Juszyńska-Gałązka, Ewa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning studies for liquid crystal texture recognition</atitle><jtitle>Liquid crystals</jtitle><date>2024-01-26</date><risdate>2024</risdate><volume>51</volume><issue>2</issue><spage>255</spage><epage>264</epage><pages>255-264</pages><issn>0267-8292</issn><eissn>1366-5855</eissn><abstract>Machine learning techniques such as local binary pattern algorithm and convolutional neural network were applied to study textures of liquid crystal compound (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7). This compound exhibits in its polymorphism several smectic phases (smectic A, ferroelectric smectic C and antiferroelectric smectic C) and two glass states of antiferroelectric smectic C phase, which textures are difficult to distinguish. Proof-of-concept evidence is provided, demonstrating the ability of machine learning algorithms to identify transition temperatures and the respective phases involved. The article describes the procedure for preparing a dataset of textures obtained from polarised microscopy for classification using convolutional neural networks, especially in cases where the image dataset is unbalanced. It utilises the feature of their self-similarity and image augmentation, particularly the cropping procedure. A Kolmogorov-Smirnov test was conducted to check if selected images do not carry the same information.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02678292.2023.2292635</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-8292
ispartof Liquid crystals, 2024-01, Vol.51 (2), p.255-264
issn 0267-8292
1366-5855
language eng
recordid cdi_proquest_journals_3048303307
source Taylor and Francis Science and Technology Collection
subjects Algorithms
antiferroelectric liquid crystals
Antiferroelectricity
Artificial neural networks
Benzoates
Datasets
glass transition
Liquid crystals
Machine learning
neural networks
Polymorphism
Self-similarity
Texture recognition
Transition temperatures
title Machine learning studies for liquid crystal texture recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20studies%20for%20liquid%20crystal%20texture%20recognition&rft.jtitle=Liquid%20crystals&rft.au=Osiecka-Drewniak,%20Natalia&rft.date=2024-01-26&rft.volume=51&rft.issue=2&rft.spage=255&rft.epage=264&rft.pages=255-264&rft.issn=0267-8292&rft.eissn=1366-5855&rft_id=info:doi/10.1080/02678292.2023.2292635&rft_dat=%3Cproquest_cross%3E3048303307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b5c52c391d6b5e28a892a858bdf7f1a309fc30e0058f9042625da226876bac6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3048303307&rft_id=info:pmid/&rfr_iscdi=true