Loading…

Pyridinic-N exclusively enriched CNT-encapsulated NiFe interfacial alloy nanoparticles on knitted carbon fiber cloth as bifunctional oxygen catalysts for biaxially flexible zinc-air batteries

The electrocatalytic oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are the core reactions in reversible zinc-air batteries but are kinetically challenging because of their complex multi-electron transfer process. In this case, the exploration and rational design of non-precious...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1185-1195
Main Authors: Poudel, Milan Babu, Vijayapradeep, Subramanian, Sekar, Karthikeyan, Kim, Jong Seok, Yoo, Dong Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrocatalytic oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are the core reactions in reversible zinc-air batteries but are kinetically challenging because of their complex multi-electron transfer process. In this case, the exploration and rational design of non-precious bifunctional oxygen electrocatalysts with dense active sites and optimized electronic structures can facilitate favorable 4e − transfer. In this study, we report a highly reversible bifunctional electrocatalyst for flexible Zn-air batteries featuring pyridinic-N exclusively enriched carbon-nanotube-encased nickel-iron (NiFe) interfacial alloy nanoparticles derived from an LDH template on knitted carbon fiber cloth. The NiFe nanoparticles were catalytically released from NiFe-MOFs to form CNT tentacles when pyrolyzed in an inert atmosphere. XPS and XAS studies revealed the dominant presence of pyridinic-N, which reduces electron localization around NiFe centers and improves the interaction with oxygenated species. As a result, NiFe-N-CNT-KCC catalysts exhibited a low operating overpotential ( η 10 ) of 173 mV for the OER and a half-wave potential ( E 1/2 ) of 0.87 V for the ORR, which are superior to benchmark electrocatalysts. As an air cathode for zinc-air batteries, the NiFe-N-CNT-KCC-based battery showed an excellent electrochemical performance, with an open circuit voltage (OCV) of 1.55 V, high power density of 153 mW cm −2 , excellent specific capacity of 793.2 mA h g −1 , and long-term stability. Impressively, a solid-state flexible zinc-air battery with the NiFe-N-CNT-KCC cathode showed an admirable rate performance and exceptional mechanical stability under arbitrary bending and twisting conditions, showing great potential for practical implementation in next-generation high-power and high-energy-density batteries wearable applications. A highly reversible bifunctional electrocatalyst for flexible Zn air batteries was fabricated featuring pyridinic-N exclusively enriched CNT encased NiFe interfacial alloy nanoparticles derived from an LDH template on knitted carbon fiber cloth.
ISSN:2050-7488
2050-7496
DOI:10.1039/d3ta07609a