Loading…
On boosting the power of Chatterjee’s rank correlation
Summary The ingenious approach of Chatterjee (2021) to estimate a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the appealing property of being between 0 and 1, and being 0 or 1 if and only if...
Saved in:
Published in: | Biometrika 2023-06, Vol.110 (2), p.283-299 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173 |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173 |
container_end_page | 299 |
container_issue | 2 |
container_start_page | 283 |
container_title | Biometrika |
container_volume | 110 |
creator | Lin, Z Han, F |
description | Summary
The ingenious approach of Chatterjee (2021) to estimate a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the appealing property of being between 0 and 1, and being 0 or 1 if and only if the corresponding pair of random variables is independent or one is a measurable function of the other almost surely. However, more recent studies (Cao & Bickel 2020; Shi et al. 2022b) showed that independence tests based on Chatterjee’s rank correlation are unfortunately rate inefficient against various local alternatives and they call for variants. We answer this call by proposing an improvement to Chatterjee’s rank correlation that still consistently estimates the same dependence measure, but provably achieves near-parametric efficiency in testing against Gaussian rotation alternatives. This is possible by incorporating many right nearest neighbours in constructing the correlation coefficients. We thus overcome the ‘ only one disadvantage’ of Chatterjee’s rank correlation (Chatterjee, 2021, § 7). |
doi_str_mv | 10.1093/biomet/asac048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049131810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asac048</oup_id><sourcerecordid>3049131810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEiWwMltiYkh7b-04zogi_qRKXWC2nMSmKW0cbEeIjdfg9XgSUqU709GVzneP9BFyjTBHKNiiat3exIUOugYuT8gMueApyxBOyQwARMo45-fkIoTt4RSZmBG57mjlXIht90bjxtDefRpPnaXlRsdo_NaY3--fQL3u3mntvDc7HVvXXZIzq3fBXB0zIa8P9y_lU7paPz6Xd6u0ZoAxRVuDxkxiLjMuZZ5JsAa0bnJeLS0zvBC8aawQQiMwJirW1A2YZV7YkcecJeRm-tt79zGYENXWDb4bJxUDXiBDOYIJmU-t2rsQvLGq9-1e-y-FoA521GRHHe2MwO0EuKH_r_sHVTVoJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049131810</pqid></control><display><type>article</type><title>On boosting the power of Chatterjee’s rank correlation</title><source>Oxford Journals Online</source><creator>Lin, Z ; Han, F</creator><creatorcontrib>Lin, Z ; Han, F</creatorcontrib><description>Summary
The ingenious approach of Chatterjee (2021) to estimate a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the appealing property of being between 0 and 1, and being 0 or 1 if and only if the corresponding pair of random variables is independent or one is a measurable function of the other almost surely. However, more recent studies (Cao & Bickel 2020; Shi et al. 2022b) showed that independence tests based on Chatterjee’s rank correlation are unfortunately rate inefficient against various local alternatives and they call for variants. We answer this call by proposing an improvement to Chatterjee’s rank correlation that still consistently estimates the same dependence measure, but provably achieves near-parametric efficiency in testing against Gaussian rotation alternatives. This is possible by incorporating many right nearest neighbours in constructing the correlation coefficients. We thus overcome the ‘ only one disadvantage’ of Chatterjee’s rank correlation (Chatterjee, 2021, § 7).</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asac048</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Correlation coefficient ; Correlation coefficients ; Independent variables ; Mathematical analysis ; Random variables</subject><ispartof>Biometrika, 2023-06, Vol.110 (2), p.283-299</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Biometrika Trust. All rights reserved. For permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173</citedby><cites>FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lin, Z</creatorcontrib><creatorcontrib>Han, F</creatorcontrib><title>On boosting the power of Chatterjee’s rank correlation</title><title>Biometrika</title><description>Summary
The ingenious approach of Chatterjee (2021) to estimate a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the appealing property of being between 0 and 1, and being 0 or 1 if and only if the corresponding pair of random variables is independent or one is a measurable function of the other almost surely. However, more recent studies (Cao & Bickel 2020; Shi et al. 2022b) showed that independence tests based on Chatterjee’s rank correlation are unfortunately rate inefficient against various local alternatives and they call for variants. We answer this call by proposing an improvement to Chatterjee’s rank correlation that still consistently estimates the same dependence measure, but provably achieves near-parametric efficiency in testing against Gaussian rotation alternatives. This is possible by incorporating many right nearest neighbours in constructing the correlation coefficients. We thus overcome the ‘ only one disadvantage’ of Chatterjee’s rank correlation (Chatterjee, 2021, § 7).</description><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Independent variables</subject><subject>Mathematical analysis</subject><subject>Random variables</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEiWwMltiYkh7b-04zogi_qRKXWC2nMSmKW0cbEeIjdfg9XgSUqU709GVzneP9BFyjTBHKNiiat3exIUOugYuT8gMueApyxBOyQwARMo45-fkIoTt4RSZmBG57mjlXIht90bjxtDefRpPnaXlRsdo_NaY3--fQL3u3mntvDc7HVvXXZIzq3fBXB0zIa8P9y_lU7paPz6Xd6u0ZoAxRVuDxkxiLjMuZZ5JsAa0bnJeLS0zvBC8aawQQiMwJirW1A2YZV7YkcecJeRm-tt79zGYENXWDb4bJxUDXiBDOYIJmU-t2rsQvLGq9-1e-y-FoA521GRHHe2MwO0EuKH_r_sHVTVoJg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lin, Z</creator><creator>Han, F</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20230601</creationdate><title>On boosting the power of Chatterjee’s rank correlation</title><author>Lin, Z ; Han, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Independent variables</topic><topic>Mathematical analysis</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Z</creatorcontrib><creatorcontrib>Han, F</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Z</au><au>Han, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On boosting the power of Chatterjee’s rank correlation</atitle><jtitle>Biometrika</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>110</volume><issue>2</issue><spage>283</spage><epage>299</epage><pages>283-299</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
The ingenious approach of Chatterjee (2021) to estimate a measure of dependence first proposed by Dette et al. (2013) based on simple rank statistics has quickly caught attention. This measure of dependence has the appealing property of being between 0 and 1, and being 0 or 1 if and only if the corresponding pair of random variables is independent or one is a measurable function of the other almost surely. However, more recent studies (Cao & Bickel 2020; Shi et al. 2022b) showed that independence tests based on Chatterjee’s rank correlation are unfortunately rate inefficient against various local alternatives and they call for variants. We answer this call by proposing an improvement to Chatterjee’s rank correlation that still consistently estimates the same dependence measure, but provably achieves near-parametric efficiency in testing against Gaussian rotation alternatives. This is possible by incorporating many right nearest neighbours in constructing the correlation coefficients. We thus overcome the ‘ only one disadvantage’ of Chatterjee’s rank correlation (Chatterjee, 2021, § 7).</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asac048</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2023-06, Vol.110 (2), p.283-299 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_3049131810 |
source | Oxford Journals Online |
subjects | Correlation coefficient Correlation coefficients Independent variables Mathematical analysis Random variables |
title | On boosting the power of Chatterjee’s rank correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20boosting%20the%20power%20of%20Chatterjee%E2%80%99s%20rank%20correlation&rft.jtitle=Biometrika&rft.au=Lin,%20Z&rft.date=2023-06-01&rft.volume=110&rft.issue=2&rft.spage=283&rft.epage=299&rft.pages=283-299&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asac048&rft_dat=%3Cproquest_cross%3E3049131810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-1fc0a15817854887580fe0aad74b2f3e4964ddf666a10336b3dcd0e279f301173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049131810&rft_id=info:pmid/&rft_oup_id=10.1093/biomet/asac048&rfr_iscdi=true |