Loading…
Controlling glass forming kinetics in 2D perovskites using organic cation isomers
The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of...
Saved in:
Published in: | Chemical science (Cambridge) 2024-05, Vol.15 (17), p.6432-6444 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3 |
container_end_page | 6444 |
container_issue | 17 |
container_start_page | 6432 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Singh, Akash Xie, Yi Adams, Curtis Bobay, Benjamin G Mitzi, David B |
description | The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics
via
synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. (
S
)-(−)-1-(1-Naphthyl)ethylammonium lead bromide (
S
(1-1)NPB) exhibits a lower melting point (
T
m
) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s
−1
. In contrast, (
S
)-(−)-1-(2-naphthyl)ethylammonium lead bromide (
S
(1-2)NPB) displays a
T
m
∼193 °C and requires a CCR of 2500 °C s
−1
, necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct
T
m
and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors.
The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed. |
doi_str_mv | 10.1039/d3sc06461a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3049212744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049212744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx0OpqJy--N6y0JcinCaZTXbzJHLnLxBE2j6HXDZ7je4mZ2ZX6H9vrmev6rzMDN8PX2b4EnLE6AmjoE4bQEtlKZn5RPY5LdlUClCftzOne-QQ8YHmAmCCV7tkD2qpFK_5PrmfxTCk2HU-LItlZxCLNqZ-vT364AZvsfCh4PNi5VJ8xkc_OCxGXAMxLU3wtrBm8DEUHmPvEh6QndZ06A5f-4T8urz4Obue3t5d3czOb6cW6nqYispVJXViAdYJbqRsS17KRW1aaoSjqqmEUtIuJKstB2gYMNm2VkDDTVZamJCzje9qXPSusS7_YTq9Sr436Y-Oxuv3SvC_9TI-a8ao5IyL7PD91SHFp9HhoHuP1nWdCS6OqIEKqkAwuUa_fUAf4phC_i9Tpcp2VVlm6nhD2RQRk2u31zCq12npOfyY_U3rPMNf396_Rf9lk4EvGyCh3ar_44YXr7WZww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049212744</pqid></control><display><type>article</type><title>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</title><source>Open Access: PubMed Central</source><creator>Singh, Akash ; Xie, Yi ; Adams, Curtis ; Bobay, Benjamin G ; Mitzi, David B</creator><creatorcontrib>Singh, Akash ; Xie, Yi ; Adams, Curtis ; Bobay, Benjamin G ; Mitzi, David B</creatorcontrib><description>The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics
via
synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. (
S
)-(−)-1-(1-Naphthyl)ethylammonium lead bromide (
S
(1-1)NPB) exhibits a lower melting point (
T
m
) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s
−1
. In contrast, (
S
)-(−)-1-(2-naphthyl)ethylammonium lead bromide (
S
(1-2)NPB) displays a
T
m
∼193 °C and requires a CCR of 2500 °C s
−1
, necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct
T
m
and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors.
The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc06461a</identifier><identifier>PMID: 38699282</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cations ; Chemistry ; Cooling rate ; Crystallization ; Functional groups ; Glass ; Glass formation ; Heat measurement ; Hydrogen bonding ; Isomers ; Kinetics ; Melting points ; Metal halides ; Optoelectronics ; Perovskites ; Single crystals ; Structural engineering</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (17), p.6432-6444</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3</cites><orcidid>0000-0001-5189-4612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062125/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062125/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38699282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Adams, Curtis</creatorcontrib><creatorcontrib>Bobay, Benjamin G</creatorcontrib><creatorcontrib>Mitzi, David B</creatorcontrib><title>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics
via
synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. (
S
)-(−)-1-(1-Naphthyl)ethylammonium lead bromide (
S
(1-1)NPB) exhibits a lower melting point (
T
m
) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s
−1
. In contrast, (
S
)-(−)-1-(2-naphthyl)ethylammonium lead bromide (
S
(1-2)NPB) displays a
T
m
∼193 °C and requires a CCR of 2500 °C s
−1
, necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct
T
m
and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors.
The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.</description><subject>Cations</subject><subject>Chemistry</subject><subject>Cooling rate</subject><subject>Crystallization</subject><subject>Functional groups</subject><subject>Glass</subject><subject>Glass formation</subject><subject>Heat measurement</subject><subject>Hydrogen bonding</subject><subject>Isomers</subject><subject>Kinetics</subject><subject>Melting points</subject><subject>Metal halides</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Single crystals</subject><subject>Structural engineering</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkd9LHDEQx0OpqJy--N6y0JcinCaZTXbzJHLnLxBE2j6HXDZ7je4mZ2ZX6H9vrmev6rzMDN8PX2b4EnLE6AmjoE4bQEtlKZn5RPY5LdlUClCftzOne-QQ8YHmAmCCV7tkD2qpFK_5PrmfxTCk2HU-LItlZxCLNqZ-vT364AZvsfCh4PNi5VJ8xkc_OCxGXAMxLU3wtrBm8DEUHmPvEh6QndZ06A5f-4T8urz4Obue3t5d3czOb6cW6nqYispVJXViAdYJbqRsS17KRW1aaoSjqqmEUtIuJKstB2gYMNm2VkDDTVZamJCzje9qXPSusS7_YTq9Sr436Y-Oxuv3SvC_9TI-a8ao5IyL7PD91SHFp9HhoHuP1nWdCS6OqIEKqkAwuUa_fUAf4phC_i9Tpcp2VVlm6nhD2RQRk2u31zCq12npOfyY_U3rPMNf396_Rf9lk4EvGyCh3ar_44YXr7WZww</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Singh, Akash</creator><creator>Xie, Yi</creator><creator>Adams, Curtis</creator><creator>Bobay, Benjamin G</creator><creator>Mitzi, David B</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5189-4612</orcidid></search><sort><creationdate>20240501</creationdate><title>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</title><author>Singh, Akash ; Xie, Yi ; Adams, Curtis ; Bobay, Benjamin G ; Mitzi, David B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cations</topic><topic>Chemistry</topic><topic>Cooling rate</topic><topic>Crystallization</topic><topic>Functional groups</topic><topic>Glass</topic><topic>Glass formation</topic><topic>Heat measurement</topic><topic>Hydrogen bonding</topic><topic>Isomers</topic><topic>Kinetics</topic><topic>Melting points</topic><topic>Metal halides</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Single crystals</topic><topic>Structural engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Adams, Curtis</creatorcontrib><creatorcontrib>Bobay, Benjamin G</creatorcontrib><creatorcontrib>Mitzi, David B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Akash</au><au>Xie, Yi</au><au>Adams, Curtis</au><au>Bobay, Benjamin G</au><au>Mitzi, David B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>17</issue><spage>6432</spage><epage>6444</epage><pages>6432-6444</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics
via
synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. (
S
)-(−)-1-(1-Naphthyl)ethylammonium lead bromide (
S
(1-1)NPB) exhibits a lower melting point (
T
m
) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s
−1
. In contrast, (
S
)-(−)-1-(2-naphthyl)ethylammonium lead bromide (
S
(1-2)NPB) displays a
T
m
∼193 °C and requires a CCR of 2500 °C s
−1
, necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct
T
m
and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors.
The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38699282</pmid><doi>10.1039/d3sc06461a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5189-4612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-05, Vol.15 (17), p.6432-6444 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_journals_3049212744 |
source | Open Access: PubMed Central |
subjects | Cations Chemistry Cooling rate Crystallization Functional groups Glass Glass formation Heat measurement Hydrogen bonding Isomers Kinetics Melting points Metal halides Optoelectronics Perovskites Single crystals Structural engineering |
title | Controlling glass forming kinetics in 2D perovskites using organic cation isomers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20glass%20forming%20kinetics%20in%202D%20perovskites%20using%20organic%20cation%20isomers&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Singh,%20Akash&rft.date=2024-05-01&rft.volume=15&rft.issue=17&rft.spage=6432&rft.epage=6444&rft.pages=6432-6444&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc06461a&rft_dat=%3Cproquest_pubme%3E3049212744%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049212744&rft_id=info:pmid/38699282&rfr_iscdi=true |