Loading…

Controlling glass forming kinetics in 2D perovskites using organic cation isomers

The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2024-05, Vol.15 (17), p.6432-6444
Main Authors: Singh, Akash, Xie, Yi, Adams, Curtis, Bobay, Benjamin G, Mitzi, David B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3
container_end_page 6444
container_issue 17
container_start_page 6432
container_title Chemical science (Cambridge)
container_volume 15
creator Singh, Akash
Xie, Yi
Adams, Curtis
Bobay, Benjamin G
Mitzi, David B
description The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics via synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. ( S )-(−)-1-(1-Naphthyl)ethylammonium lead bromide ( S (1-1)NPB) exhibits a lower melting point ( T m ) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s −1 . In contrast, ( S )-(−)-1-(2-naphthyl)ethylammonium lead bromide ( S (1-2)NPB) displays a T m ∼193 °C and requires a CCR of 2500 °C s −1 , necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct T m and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors. The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.
doi_str_mv 10.1039/d3sc06461a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3049212744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049212744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx0OpqJy--N6y0JcinCaZTXbzJHLnLxBE2j6HXDZ7je4mZ2ZX6H9vrmev6rzMDN8PX2b4EnLE6AmjoE4bQEtlKZn5RPY5LdlUClCftzOne-QQ8YHmAmCCV7tkD2qpFK_5PrmfxTCk2HU-LItlZxCLNqZ-vT364AZvsfCh4PNi5VJ8xkc_OCxGXAMxLU3wtrBm8DEUHmPvEh6QndZ06A5f-4T8urz4Obue3t5d3czOb6cW6nqYispVJXViAdYJbqRsS17KRW1aaoSjqqmEUtIuJKstB2gYMNm2VkDDTVZamJCzje9qXPSusS7_YTq9Sr436Y-Oxuv3SvC_9TI-a8ao5IyL7PD91SHFp9HhoHuP1nWdCS6OqIEKqkAwuUa_fUAf4phC_i9Tpcp2VVlm6nhD2RQRk2u31zCq12npOfyY_U3rPMNf396_Rf9lk4EvGyCh3ar_44YXr7WZww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049212744</pqid></control><display><type>article</type><title>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</title><source>Open Access: PubMed Central</source><creator>Singh, Akash ; Xie, Yi ; Adams, Curtis ; Bobay, Benjamin G ; Mitzi, David B</creator><creatorcontrib>Singh, Akash ; Xie, Yi ; Adams, Curtis ; Bobay, Benjamin G ; Mitzi, David B</creatorcontrib><description>The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics via synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. ( S )-(−)-1-(1-Naphthyl)ethylammonium lead bromide ( S (1-1)NPB) exhibits a lower melting point ( T m ) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s −1 . In contrast, ( S )-(−)-1-(2-naphthyl)ethylammonium lead bromide ( S (1-2)NPB) displays a T m ∼193 °C and requires a CCR of 2500 °C s −1 , necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct T m and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors. The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc06461a</identifier><identifier>PMID: 38699282</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cations ; Chemistry ; Cooling rate ; Crystallization ; Functional groups ; Glass ; Glass formation ; Heat measurement ; Hydrogen bonding ; Isomers ; Kinetics ; Melting points ; Metal halides ; Optoelectronics ; Perovskites ; Single crystals ; Structural engineering</subject><ispartof>Chemical science (Cambridge), 2024-05, Vol.15 (17), p.6432-6444</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3</cites><orcidid>0000-0001-5189-4612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062125/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062125/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38699282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Adams, Curtis</creatorcontrib><creatorcontrib>Bobay, Benjamin G</creatorcontrib><creatorcontrib>Mitzi, David B</creatorcontrib><title>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics via synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. ( S )-(−)-1-(1-Naphthyl)ethylammonium lead bromide ( S (1-1)NPB) exhibits a lower melting point ( T m ) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s −1 . In contrast, ( S )-(−)-1-(2-naphthyl)ethylammonium lead bromide ( S (1-2)NPB) displays a T m ∼193 °C and requires a CCR of 2500 °C s −1 , necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct T m and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors. The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.</description><subject>Cations</subject><subject>Chemistry</subject><subject>Cooling rate</subject><subject>Crystallization</subject><subject>Functional groups</subject><subject>Glass</subject><subject>Glass formation</subject><subject>Heat measurement</subject><subject>Hydrogen bonding</subject><subject>Isomers</subject><subject>Kinetics</subject><subject>Melting points</subject><subject>Metal halides</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Single crystals</subject><subject>Structural engineering</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkd9LHDEQx0OpqJy--N6y0JcinCaZTXbzJHLnLxBE2j6HXDZ7je4mZ2ZX6H9vrmev6rzMDN8PX2b4EnLE6AmjoE4bQEtlKZn5RPY5LdlUClCftzOne-QQ8YHmAmCCV7tkD2qpFK_5PrmfxTCk2HU-LItlZxCLNqZ-vT364AZvsfCh4PNi5VJ8xkc_OCxGXAMxLU3wtrBm8DEUHmPvEh6QndZ06A5f-4T8urz4Obue3t5d3czOb6cW6nqYispVJXViAdYJbqRsS17KRW1aaoSjqqmEUtIuJKstB2gYMNm2VkDDTVZamJCzje9qXPSusS7_YTq9Sr436Y-Oxuv3SvC_9TI-a8ao5IyL7PD91SHFp9HhoHuP1nWdCS6OqIEKqkAwuUa_fUAf4phC_i9Tpcp2VVlm6nhD2RQRk2u31zCq12npOfyY_U3rPMNf396_Rf9lk4EvGyCh3ar_44YXr7WZww</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Singh, Akash</creator><creator>Xie, Yi</creator><creator>Adams, Curtis</creator><creator>Bobay, Benjamin G</creator><creator>Mitzi, David B</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5189-4612</orcidid></search><sort><creationdate>20240501</creationdate><title>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</title><author>Singh, Akash ; Xie, Yi ; Adams, Curtis ; Bobay, Benjamin G ; Mitzi, David B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cations</topic><topic>Chemistry</topic><topic>Cooling rate</topic><topic>Crystallization</topic><topic>Functional groups</topic><topic>Glass</topic><topic>Glass formation</topic><topic>Heat measurement</topic><topic>Hydrogen bonding</topic><topic>Isomers</topic><topic>Kinetics</topic><topic>Melting points</topic><topic>Metal halides</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Single crystals</topic><topic>Structural engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Akash</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Adams, Curtis</creatorcontrib><creatorcontrib>Bobay, Benjamin G</creatorcontrib><creatorcontrib>Mitzi, David B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Akash</au><au>Xie, Yi</au><au>Adams, Curtis</au><au>Bobay, Benjamin G</au><au>Mitzi, David B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling glass forming kinetics in 2D perovskites using organic cation isomers</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>15</volume><issue>17</issue><spage>6432</spage><epage>6444</epage><pages>6432-6444</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics via synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. ( S )-(−)-1-(1-Naphthyl)ethylammonium lead bromide ( S (1-1)NPB) exhibits a lower melting point ( T m ) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s −1 . In contrast, ( S )-(−)-1-(2-naphthyl)ethylammonium lead bromide ( S (1-2)NPB) displays a T m ∼193 °C and requires a CCR of 2500 °C s −1 , necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct T m and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors. The melting properties and kinetics of glass formation in 2D perovskites can be finely tuned using isomeric organic cations bearing distinct substitutional functional group positions, resulting in enhancement of glass-crystalline switching speed.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38699282</pmid><doi>10.1039/d3sc06461a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5189-4612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-05, Vol.15 (17), p.6432-6444
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_3049212744
source Open Access: PubMed Central
subjects Cations
Chemistry
Cooling rate
Crystallization
Functional groups
Glass
Glass formation
Heat measurement
Hydrogen bonding
Isomers
Kinetics
Melting points
Metal halides
Optoelectronics
Perovskites
Single crystals
Structural engineering
title Controlling glass forming kinetics in 2D perovskites using organic cation isomers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20glass%20forming%20kinetics%20in%202D%20perovskites%20using%20organic%20cation%20isomers&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Singh,%20Akash&rft.date=2024-05-01&rft.volume=15&rft.issue=17&rft.spage=6432&rft.epage=6444&rft.pages=6432-6444&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc06461a&rft_dat=%3Cproquest_pubme%3E3049212744%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-57e740e5b3ce52a66f4246b8af0a5e09d75996cb618c233d1316ffc53d2a599f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049212744&rft_id=info:pmid/38699282&rfr_iscdi=true