Loading…

Numerical investigation of tubeside maldistribution in shell-and-tube heat exchangers

Shell-and-tube heat exchangers (STHE) are widely used in the process and energy industry. Maldistribution and the often resulting fouling in these STHE cause additional energy consumption and lower production throughput. Increased average wall shear stress, compared to that of the maldistributed cas...

Full description

Saved in:
Bibliographic Details
Published in:Heat and mass transfer 2024-05, Vol.60 (5), p.851-859
Main Authors: Schab, Richard, Kutschabsky, Alexander, Unz, Simon, Beckmann, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Shell-and-tube heat exchangers (STHE) are widely used in the process and energy industry. Maldistribution and the often resulting fouling in these STHE cause additional energy consumption and lower production throughput. Increased average wall shear stress, compared to that of the maldistributed case inside the tubes is expected to mitigate fouling. This can be achieved by a uniform distribution into the tubes. Field and laboratory data suggest that common crude oil fouling is profoundly mitigated above 10 Pa and is significantly reduced above a wall shear stress of 15 Pa [ 1 ]. Many STHE already have lower design shear stresses than those mentioned. Therefore, if maldistribution takes place, tubes with less flow velocity will have even more fouling. To investigate tubeside flow maldistribution, a parametric STHE model is studied with computational fluid dynamics (CFD). At first, a comparison between the standard k- ϵ -model and the new standard SST-model is performed to check if SST could provide improved simulation results. Afterward, a range of geometrical parameters will be investigated to find influencing quantities of maldistribution. The resulting velocity distributions are visualized and evaluated by using different statistical approaches. At least, a sensitivity analysis will be done to show how each parameter influences the tubeside flow distribution in STHE.
ISSN:0947-7411
1432-1181
DOI:10.1007/s00231-023-03385-5