Loading…
Enhancing the ecological value of oil palm agriculture through set-asides
Agricultural expansion is the primary driver of ecological degradation across the tropics. Set-asides—uncultivated parts of agricultural landscapes, often on steep slopes and alongside rivers—may alleviate environmental impacts but can reduce the area cultivated. Here we model an approach to configu...
Saved in:
Published in: | Nature sustainability 2023-05, Vol.6 (5), p.513-525 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Agricultural expansion is the primary driver of ecological degradation across the tropics. Set-asides—uncultivated parts of agricultural landscapes, often on steep slopes and alongside rivers—may alleviate environmental impacts but can reduce the area cultivated. Here we model an approach to configuring set-asides aimed at optimizing ecological outcomes (biodiversity, above-ground carbon storage and nutrient cycling) without reducing net cultivation area. We compare set-asides in an oil palm landscape where all plantations adopt the same configuration (‘uniform’ approach) with a scenario where there can be variation in configuration among plantations (‘variable’ approach). We find that all set-aside configurations support substantial ecological values but that the best strategies involve set-asides, particularly alongside rivers, that are spatially targeted and variable among plantations. This ‘variable’ approach can increase ecological outcomes twofold over the ‘uniform’ approach without reducing net cultivation area. Our findings underscore the potential importance of well-planned set-asides for enhancing agricultural sustainability.
Agriculture is the largest threat to tropical ecosystems. This study finds that setting aside land for nature in targeted fashion, especially alongside rivers, can increase biodiversity and ecosystem services without reducing the net area cultivated. |
---|---|
ISSN: | 2398-9629 2398-9629 |
DOI: | 10.1038/s41893-022-01049-6 |