Loading…

Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices

Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-05, Vol.34 (18), p.n/a
Main Authors: Mukhopadhyay, Arani, Pal, Anish, Sarkar, Sreya, Megaridis, Constantine M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803
cites cdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced functional materials
container_volume 34
creator Mukhopadhyay, Arani
Pal, Anish
Sarkar, Sreya
Megaridis, Constantine M.
description Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders. A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.
doi_str_mv 10.1002/adfm.202313141
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049591474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049591474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhhujiYhePW_iRQ_gfpVtjwRESQAPYvTWjNtZXdJucbfVcNN_4G_0lwjB4NHTvJk8z0zyRtEpo11GKb-E3JRdTrlggkm2F7VYj_U6gvJkf5fZ42F0FMKCUqaUkK3ocwIB_ffH17xxmJO7xhvQSB6wruHJFrZekWmVW2M11LZyBFxOxk5Xfln57aYypF80pXVNSWa29jZHct4vZhdkgB5KqwOxjsxf0JdQkCk4eMYSXU2G-GY1huPowEAR8OR3tqP70dV8cNOZ3F6PB_1JR4tYsY5SKEzOc8rBaExSxTVqQKljkEpJhiZJtEgxNjyJY65yEUsNaaoTlMASKtrR2fbu0levDYY6W1SNd-uXmaAyjVMmlVxT3S2lfRWCR5MtvS3BrzJGs03N2abmbFfzWki3wrstcPUPnfWHo-mf-wMxgYOi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049591474</pqid></control><display><type>article</type><title>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mukhopadhyay, Arani ; Pal, Anish ; Sarkar, Sreya ; Megaridis, Constantine M.</creator><creatorcontrib>Mukhopadhyay, Arani ; Pal, Anish ; Sarkar, Sreya ; Megaridis, Constantine M.</creatorcontrib><description>Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders. A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313141</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aluminum nitride ; aluminum nitride ceramic ; Aqueous solutions ; Ceramics ; Cooling ; Electrical resistivity ; Electronics ; electronics cooling ; Heat exchangers ; Heat pipes ; Hydrolysis ; Material properties ; phase change heat transfer ; Substrates ; surface functionalization ; Surface roughness ; Thermal conductivity ; Thermal expansion ; Thermal management ; Wettability ; wettability engineering ; Wide bandgap semiconductors</subject><ispartof>Advanced functional materials, 2024-05, Vol.34 (18), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</citedby><cites>FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</cites><orcidid>0000-0002-3278-0860 ; 0000-0003-2717-1072 ; 0000-0002-6339-6933 ; 0000-0002-1907-4689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mukhopadhyay, Arani</creatorcontrib><creatorcontrib>Pal, Anish</creatorcontrib><creatorcontrib>Sarkar, Sreya</creatorcontrib><creatorcontrib>Megaridis, Constantine M.</creatorcontrib><title>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</title><title>Advanced functional materials</title><description>Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders. A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>aluminum nitride ceramic</subject><subject>Aqueous solutions</subject><subject>Ceramics</subject><subject>Cooling</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>electronics cooling</subject><subject>Heat exchangers</subject><subject>Heat pipes</subject><subject>Hydrolysis</subject><subject>Material properties</subject><subject>phase change heat transfer</subject><subject>Substrates</subject><subject>surface functionalization</subject><subject>Surface roughness</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal management</subject><subject>Wettability</subject><subject>wettability engineering</subject><subject>Wide bandgap semiconductors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PwkAQhhujiYhePW_iRQ_gfpVtjwRESQAPYvTWjNtZXdJucbfVcNN_4G_0lwjB4NHTvJk8z0zyRtEpo11GKb-E3JRdTrlggkm2F7VYj_U6gvJkf5fZ42F0FMKCUqaUkK3ocwIB_ffH17xxmJO7xhvQSB6wruHJFrZekWmVW2M11LZyBFxOxk5Xfln57aYypF80pXVNSWa29jZHct4vZhdkgB5KqwOxjsxf0JdQkCk4eMYSXU2G-GY1huPowEAR8OR3tqP70dV8cNOZ3F6PB_1JR4tYsY5SKEzOc8rBaExSxTVqQKljkEpJhiZJtEgxNjyJY65yEUsNaaoTlMASKtrR2fbu0levDYY6W1SNd-uXmaAyjVMmlVxT3S2lfRWCR5MtvS3BrzJGs03N2abmbFfzWki3wrstcPUPnfWHo-mf-wMxgYOi</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mukhopadhyay, Arani</creator><creator>Pal, Anish</creator><creator>Sarkar, Sreya</creator><creator>Megaridis, Constantine M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3278-0860</orcidid><orcidid>https://orcid.org/0000-0003-2717-1072</orcidid><orcidid>https://orcid.org/0000-0002-6339-6933</orcidid><orcidid>https://orcid.org/0000-0002-1907-4689</orcidid></search><sort><creationdate>20240501</creationdate><title>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</title><author>Mukhopadhyay, Arani ; Pal, Anish ; Sarkar, Sreya ; Megaridis, Constantine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>aluminum nitride ceramic</topic><topic>Aqueous solutions</topic><topic>Ceramics</topic><topic>Cooling</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>electronics cooling</topic><topic>Heat exchangers</topic><topic>Heat pipes</topic><topic>Hydrolysis</topic><topic>Material properties</topic><topic>phase change heat transfer</topic><topic>Substrates</topic><topic>surface functionalization</topic><topic>Surface roughness</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal management</topic><topic>Wettability</topic><topic>wettability engineering</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, Arani</creatorcontrib><creatorcontrib>Pal, Anish</creatorcontrib><creatorcontrib>Sarkar, Sreya</creatorcontrib><creatorcontrib>Megaridis, Constantine M.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, Arani</au><au>Pal, Anish</au><au>Sarkar, Sreya</au><au>Megaridis, Constantine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>18</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders. A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313141</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3278-0860</orcidid><orcidid>https://orcid.org/0000-0003-2717-1072</orcidid><orcidid>https://orcid.org/0000-0002-6339-6933</orcidid><orcidid>https://orcid.org/0000-0002-1907-4689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-05, Vol.34 (18), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3049591474
source Wiley-Blackwell Read & Publish Collection
subjects Aluminum
Aluminum nitride
aluminum nitride ceramic
Aqueous solutions
Ceramics
Cooling
Electrical resistivity
Electronics
electronics cooling
Heat exchangers
Heat pipes
Hydrolysis
Material properties
phase change heat transfer
Substrates
surface functionalization
Surface roughness
Thermal conductivity
Thermal expansion
Thermal management
Wettability
wettability engineering
Wide bandgap semiconductors
title Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%E2%80%90Tuned%20Surface%20Wettability%20Modification%20and%20Incorporation%20of%20Aluminum%20Nitride%20(AlN)%20Ceramics%20in%20Thermal%20Management%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Mukhopadhyay,%20Arani&rft.date=2024-05-01&rft.volume=34&rft.issue=18&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313141&rft_dat=%3Cproquest_cross%3E3049591474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049591474&rft_id=info:pmid/&rfr_iscdi=true