Loading…
Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices
Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐...
Saved in:
Published in: | Advanced functional materials 2024-05, Vol.34 (18), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803 |
---|---|
cites | cdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803 |
container_end_page | n/a |
container_issue | 18 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Mukhopadhyay, Arani Pal, Anish Sarkar, Sreya Megaridis, Constantine M. |
description | Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders.
A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer. |
doi_str_mv | 10.1002/adfm.202313141 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3049591474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049591474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhhujiYhePW_iRQ_gfpVtjwRESQAPYvTWjNtZXdJucbfVcNN_4G_0lwjB4NHTvJk8z0zyRtEpo11GKb-E3JRdTrlggkm2F7VYj_U6gvJkf5fZ42F0FMKCUqaUkK3ocwIB_ffH17xxmJO7xhvQSB6wruHJFrZekWmVW2M11LZyBFxOxk5Xfln57aYypF80pXVNSWa29jZHct4vZhdkgB5KqwOxjsxf0JdQkCk4eMYSXU2G-GY1huPowEAR8OR3tqP70dV8cNOZ3F6PB_1JR4tYsY5SKEzOc8rBaExSxTVqQKljkEpJhiZJtEgxNjyJY65yEUsNaaoTlMASKtrR2fbu0levDYY6W1SNd-uXmaAyjVMmlVxT3S2lfRWCR5MtvS3BrzJGs03N2abmbFfzWki3wrstcPUPnfWHo-mf-wMxgYOi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049591474</pqid></control><display><type>article</type><title>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mukhopadhyay, Arani ; Pal, Anish ; Sarkar, Sreya ; Megaridis, Constantine M.</creator><creatorcontrib>Mukhopadhyay, Arani ; Pal, Anish ; Sarkar, Sreya ; Megaridis, Constantine M.</creatorcontrib><description>Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders.
A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202313141</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Aluminum nitride ; aluminum nitride ceramic ; Aqueous solutions ; Ceramics ; Cooling ; Electrical resistivity ; Electronics ; electronics cooling ; Heat exchangers ; Heat pipes ; Hydrolysis ; Material properties ; phase change heat transfer ; Substrates ; surface functionalization ; Surface roughness ; Thermal conductivity ; Thermal expansion ; Thermal management ; Wettability ; wettability engineering ; Wide bandgap semiconductors</subject><ispartof>Advanced functional materials, 2024-05, Vol.34 (18), p.n/a</ispartof><rights>2024 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</citedby><cites>FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</cites><orcidid>0000-0002-3278-0860 ; 0000-0003-2717-1072 ; 0000-0002-6339-6933 ; 0000-0002-1907-4689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mukhopadhyay, Arani</creatorcontrib><creatorcontrib>Pal, Anish</creatorcontrib><creatorcontrib>Sarkar, Sreya</creatorcontrib><creatorcontrib>Megaridis, Constantine M.</creatorcontrib><title>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</title><title>Advanced functional materials</title><description>Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders.
A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>aluminum nitride ceramic</subject><subject>Aqueous solutions</subject><subject>Ceramics</subject><subject>Cooling</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>electronics cooling</subject><subject>Heat exchangers</subject><subject>Heat pipes</subject><subject>Hydrolysis</subject><subject>Material properties</subject><subject>phase change heat transfer</subject><subject>Substrates</subject><subject>surface functionalization</subject><subject>Surface roughness</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermal management</subject><subject>Wettability</subject><subject>wettability engineering</subject><subject>Wide bandgap semiconductors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PwkAQhhujiYhePW_iRQ_gfpVtjwRESQAPYvTWjNtZXdJucbfVcNN_4G_0lwjB4NHTvJk8z0zyRtEpo11GKb-E3JRdTrlggkm2F7VYj_U6gvJkf5fZ42F0FMKCUqaUkK3ocwIB_ffH17xxmJO7xhvQSB6wruHJFrZekWmVW2M11LZyBFxOxk5Xfln57aYypF80pXVNSWa29jZHct4vZhdkgB5KqwOxjsxf0JdQkCk4eMYSXU2G-GY1huPowEAR8OR3tqP70dV8cNOZ3F6PB_1JR4tYsY5SKEzOc8rBaExSxTVqQKljkEpJhiZJtEgxNjyJY65yEUsNaaoTlMASKtrR2fbu0levDYY6W1SNd-uXmaAyjVMmlVxT3S2lfRWCR5MtvS3BrzJGs03N2abmbFfzWki3wrstcPUPnfWHo-mf-wMxgYOi</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Mukhopadhyay, Arani</creator><creator>Pal, Anish</creator><creator>Sarkar, Sreya</creator><creator>Megaridis, Constantine M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3278-0860</orcidid><orcidid>https://orcid.org/0000-0003-2717-1072</orcidid><orcidid>https://orcid.org/0000-0002-6339-6933</orcidid><orcidid>https://orcid.org/0000-0002-1907-4689</orcidid></search><sort><creationdate>20240501</creationdate><title>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</title><author>Mukhopadhyay, Arani ; Pal, Anish ; Sarkar, Sreya ; Megaridis, Constantine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>aluminum nitride ceramic</topic><topic>Aqueous solutions</topic><topic>Ceramics</topic><topic>Cooling</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>electronics cooling</topic><topic>Heat exchangers</topic><topic>Heat pipes</topic><topic>Hydrolysis</topic><topic>Material properties</topic><topic>phase change heat transfer</topic><topic>Substrates</topic><topic>surface functionalization</topic><topic>Surface roughness</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermal management</topic><topic>Wettability</topic><topic>wettability engineering</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, Arani</creatorcontrib><creatorcontrib>Pal, Anish</creatorcontrib><creatorcontrib>Sarkar, Sreya</creatorcontrib><creatorcontrib>Megaridis, Constantine M.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, Arani</au><au>Pal, Anish</au><au>Sarkar, Sreya</au><au>Megaridis, Constantine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>18</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aluminum nitride (AlN), a versatile ceramic with high thermal conductivity, high electrical resistivity, and a coefficient of thermal expansion compatible with silicon, is well‐suited for direct‐to‐chip cooling applications of electronics, implementation in wide bandgap semiconductors, and for high‐temperature heat exchangers. Despite multiple advantages, AlN's implementation in liquid‐cooling applications is often hindered by surface‐degrading effects of working‐fluid‐induced hydrolysis. Herein, a scalable ‐but highly tunable‐ wettability engineering approach is introduced, that allows effective implementation of bulk AlN substrates in enhanced two‐phase cooling of electronics. The approach prevents hydrolysis of AlN by aqueous media and establishes control over surface roughness, all the while maintaining bulk integrity and material properties of the underlying substrate. Demonstration of the new approach is presented in spontaneous, pumpless, surface liquid transport, a necessity if such ceramics are to play an integral role as components of sealed, phase‐change, wickless thermal‐management devices (e.g., vapor chambers or heat pipes) that require rapid working‐fluid transport in their multi‐phase interior. The novelty of this work lies in establishing a scalable methodology for utilizing and further enhancing the properties of this non‐oxide ceramic material for phase‐change heat‐transfer hermetic devices, thereby paving the way toward the implementation of this intriguing material in next‐generation heat spreaders.
A novel laser‐based modification of aluminum nitride (AlN) ceramic allows concurrent surface passivation (arresting degradation due to hydrolysis) and surface wettability modulation. The methodology allows integration of the non‐oxide ceramic in sealed, heat‐spreading vessels intended for thermal management of high‐performance electronics. A wick‐free vapor chamber is demonstrated, showing promise for direct‐to‐chip cooling and other high‐temperature applications relying on phase‐change heat transfer.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202313141</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3278-0860</orcidid><orcidid>https://orcid.org/0000-0003-2717-1072</orcidid><orcidid>https://orcid.org/0000-0002-6339-6933</orcidid><orcidid>https://orcid.org/0000-0002-1907-4689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-05, Vol.34 (18), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3049591474 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aluminum Aluminum nitride aluminum nitride ceramic Aqueous solutions Ceramics Cooling Electrical resistivity Electronics electronics cooling Heat exchangers Heat pipes Hydrolysis Material properties phase change heat transfer Substrates surface functionalization Surface roughness Thermal conductivity Thermal expansion Thermal management Wettability wettability engineering Wide bandgap semiconductors |
title | Laser‐Tuned Surface Wettability Modification and Incorporation of Aluminum Nitride (AlN) Ceramics in Thermal Management Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%E2%80%90Tuned%20Surface%20Wettability%20Modification%20and%20Incorporation%20of%20Aluminum%20Nitride%20(AlN)%20Ceramics%20in%20Thermal%20Management%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Mukhopadhyay,%20Arani&rft.date=2024-05-01&rft.volume=34&rft.issue=18&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202313141&rft_dat=%3Cproquest_cross%3E3049591474%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3571-77e3fd2d02afce8972cecae4c5a47741ef88c39e5f285527d354ca99c8e4a1803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049591474&rft_id=info:pmid/&rfr_iscdi=true |