Loading…
Dynamics of the surface growth resulted from sedimentation of spheres in a Hele–Shaw cell containing a low-viscosity fluid
In this paper, we investigate the dynamics of surface growth resulting from sedimentation of spherical granular particles in a fluid environment, using experiments and simulations. In the experimental part, spherical polystyrene particles are poured down from the top of a vertical Hele–Shaw cell and...
Saved in:
Published in: | Physics of fluids (1994) 2024-05, Vol.36 (5) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate the dynamics of surface growth resulting from sedimentation of spherical granular particles in a fluid environment, using experiments and simulations. In the experimental part, spherical polystyrene particles are poured down from the top of a vertical Hele–Shaw cell and form a 1 + 1-dimensional growing surface. The surface roughness is obtained from the images, and the growth and roughness exponents are measured. In the numerical simulation part, the surface growth process is simulated using the discrete element method, considering the interactions between the grains, and the exponents are calculated. In this method, unlike conventional simulation models, instead of a discrete deposition law, the dynamics of the individual particles throughout the process are obtained, considering different forces acting on the particles. Finally, the simulation results are compared with the experiment, and we see a very good agreement between them. We find different values for the exponents using different methods, indicating that the system is multi-affine and does not obey the scaling laws of affine models. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0200886 |