Loading…
A quantum neural network framework for scalable quantum circuit approximation of unitary matrices
In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rohit Sarma Sarkar Adhikari, Bibhas |
description | In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049907881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049907881</sourcerecordid><originalsourceid>FETCH-proquest_journals_30499078813</originalsourceid><addsrcrecordid>eNqNi0EKwjAURIMgWLR3CLguxKS17VJE8QDuyzekkJom7U-CensDimtXb5h5syAZF2JXNCXnK5J7PzDG-L7mVSUyAgc6R7AhjtSqiGASwsPhnfYIo_okh9RLMHAz6mdLjTLqQGGa0D31CEE7S11Po9UB8EVTg1oqvyHLHoxX-Zdrsj2frsdLkX5zVD50g4to09QJVrYtq5tmJ_6z3uxERrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049907881</pqid></control><display><type>article</type><title>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</title><source>Publicly Available Content Database</source><creator>Rohit Sarma Sarkar ; Adhikari, Bibhas</creator><creatorcontrib>Rohit Sarma Sarkar ; Adhikari, Bibhas</creatorcontrib><description>In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Gates (circuits) ; Lie groups ; Mathematical analysis ; Matrix algebra ; Neural networks ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3049907881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Rohit Sarma Sarkar</creatorcontrib><creatorcontrib>Adhikari, Bibhas</creatorcontrib><title>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</title><title>arXiv.org</title><description>In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.</description><subject>Approximation</subject><subject>Gates (circuits)</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Neural networks</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0EKwjAURIMgWLR3CLguxKS17VJE8QDuyzekkJom7U-CensDimtXb5h5syAZF2JXNCXnK5J7PzDG-L7mVSUyAgc6R7AhjtSqiGASwsPhnfYIo_okh9RLMHAz6mdLjTLqQGGa0D31CEE7S11Po9UB8EVTg1oqvyHLHoxX-Zdrsj2frsdLkX5zVD50g4to09QJVrYtq5tmJ_6z3uxERrM</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Rohit Sarma Sarkar</creator><creator>Adhikari, Bibhas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240207</creationdate><title>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</title><author>Rohit Sarma Sarkar ; Adhikari, Bibhas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30499078813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Gates (circuits)</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Neural networks</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Rohit Sarma Sarkar</creatorcontrib><creatorcontrib>Adhikari, Bibhas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohit Sarma Sarkar</au><au>Adhikari, Bibhas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</atitle><jtitle>arXiv.org</jtitle><date>2024-02-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3049907881 |
source | Publicly Available Content Database |
subjects | Approximation Gates (circuits) Lie groups Mathematical analysis Matrix algebra Neural networks Qubits (quantum computing) |
title | A quantum neural network framework for scalable quantum circuit approximation of unitary matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20quantum%20neural%20network%20framework%20for%20scalable%20quantum%20circuit%20approximation%20of%20unitary%20matrices&rft.jtitle=arXiv.org&rft.au=Rohit%20Sarma%20Sarkar&rft.date=2024-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049907881%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30499078813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049907881&rft_id=info:pmid/&rfr_iscdi=true |