Loading…

A quantum neural network framework for scalable quantum circuit approximation of unitary matrices

In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-02
Main Authors: Rohit Sarma Sarkar, Adhikari, Bibhas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rohit Sarma Sarkar
Adhikari, Bibhas
description In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3049907881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049907881</sourcerecordid><originalsourceid>FETCH-proquest_journals_30499078813</originalsourceid><addsrcrecordid>eNqNi0EKwjAURIMgWLR3CLguxKS17VJE8QDuyzekkJom7U-CensDimtXb5h5syAZF2JXNCXnK5J7PzDG-L7mVSUyAgc6R7AhjtSqiGASwsPhnfYIo_okh9RLMHAz6mdLjTLqQGGa0D31CEE7S11Po9UB8EVTg1oqvyHLHoxX-Zdrsj2frsdLkX5zVD50g4to09QJVrYtq5tmJ_6z3uxERrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049907881</pqid></control><display><type>article</type><title>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</title><source>Publicly Available Content Database</source><creator>Rohit Sarma Sarkar ; Adhikari, Bibhas</creator><creatorcontrib>Rohit Sarma Sarkar ; Adhikari, Bibhas</creatorcontrib><description>In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Gates (circuits) ; Lie groups ; Mathematical analysis ; Matrix algebra ; Neural networks ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3049907881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Rohit Sarma Sarkar</creatorcontrib><creatorcontrib>Adhikari, Bibhas</creatorcontrib><title>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</title><title>arXiv.org</title><description>In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.</description><subject>Approximation</subject><subject>Gates (circuits)</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Neural networks</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi0EKwjAURIMgWLR3CLguxKS17VJE8QDuyzekkJom7U-CensDimtXb5h5syAZF2JXNCXnK5J7PzDG-L7mVSUyAgc6R7AhjtSqiGASwsPhnfYIo_okh9RLMHAz6mdLjTLqQGGa0D31CEE7S11Po9UB8EVTg1oqvyHLHoxX-Zdrsj2frsdLkX5zVD50g4to09QJVrYtq5tmJ_6z3uxERrM</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Rohit Sarma Sarkar</creator><creator>Adhikari, Bibhas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240207</creationdate><title>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</title><author>Rohit Sarma Sarkar ; Adhikari, Bibhas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30499078813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Gates (circuits)</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Neural networks</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Rohit Sarma Sarkar</creatorcontrib><creatorcontrib>Adhikari, Bibhas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohit Sarma Sarkar</au><au>Adhikari, Bibhas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A quantum neural network framework for scalable quantum circuit approximation of unitary matrices</atitle><jtitle>arXiv.org</jtitle><date>2024-02-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural networks are defined by product of exponential of certain elements of the Standard Recursive Block Basis, which we introduce as an alternative to Pauli string basis for matrix algebra of complex matrices of order \(2^n\). The recursive construction of the neural networks implies that the quantum circuit approximation is scalable i.e. quantum circuit for an \((n+1)\)-qubit unitary can be constructed from the circuit of \(n\)-qubit system by adding a few CNOT gates and single-qubit gates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_3049907881
source Publicly Available Content Database
subjects Approximation
Gates (circuits)
Lie groups
Mathematical analysis
Matrix algebra
Neural networks
Qubits (quantum computing)
title A quantum neural network framework for scalable quantum circuit approximation of unitary matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20quantum%20neural%20network%20framework%20for%20scalable%20quantum%20circuit%20approximation%20of%20unitary%20matrices&rft.jtitle=arXiv.org&rft.au=Rohit%20Sarma%20Sarkar&rft.date=2024-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3049907881%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30499078813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049907881&rft_id=info:pmid/&rfr_iscdi=true