Loading…

Kinetics of dye decolorization using heterogeneous catalytic system with immobilized Achromobacter xylosoxidans DDB6

Textile effluents containing toxic dyes must be treated effectively before discharge to prevent adverse environmental impacts. Traditional physical and chemical treatment methods are costly and generate secondary pollutants. In contrast, biological treatment is a more suitable, clean, versatile, eco...

Full description

Saved in:
Bibliographic Details
Published in:Preparative biochemistry & biotechnology 2024-05, Vol.54 (5), p.691-699
Main Authors: Harish, B. S., Thayumanavan, Thangavelu, Subashkumar, Rathinasamy, Gopal, K., Kowsik Raj, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Textile effluents containing toxic dyes must be treated effectively before discharge to prevent adverse environmental impacts. Traditional physical and chemical treatment methods are costly and generate secondary pollutants. In contrast, biological treatment is a more suitable, clean, versatile, eco-friendly, and cost-effective technique for treating textile effluent. It is well established that indigenous microbial populations present in effluents can effectively degrade toxic dyes. In this regard, Achromobacter xylosoxidans DDB6 was isolated from the effluent sample to decolorize crystal violet (CV), Coomassie brilliant blue (CBB), and alizarin red (AR) by 67.20%, 28.58%, and 20.41%, respectively. The growth parameters of A. xylosoxidans DDB6 in media supplemented with 100 ppm of various dyes were determined using the modified Gompertz growth model. The immobilized cells in calcium alginate beads showed apparent decolorization rate constant of 0.27, 0.18, and 0.13 h −1 for CV, CBB, and AR, respectively. The immobilized cells in a packed bed reactor with an optimum flow rate of 0.5 mL/min were used to treat 100 ppm of CV with a percentage decolorization of 79.47% after three cycles. Based on the findings, A. xylosoxidans DDB6 could be effectively used for decolorization of various dyes.
ISSN:1082-6068
1532-2297
DOI:10.1080/10826068.2023.2273487