Loading…

On the Sharp Estimates for Convolution Operators with Oscillatory Kernel

In this article, we studied the convolution operators M k with oscillatory kernel, which are related to the solutions of the Cauchy problem for the strictly hyperbolic equations. The operator M k is associated to the characteristic hypersurfaces Σ ⊂ R 3 of a hyperbolic equation and smooth amplitude...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of fourier analysis and applications 2024-06, Vol.30 (3), Article 29
Main Authors: Ikromov, Isroil A., Ikromova, Dildora I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-180d8c006fd54bbc2171a2f46d3c468e2dc4cda1d1f1f06452e1e8153b34fa7a3
container_end_page
container_issue 3
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 30
creator Ikromov, Isroil A.
Ikromova, Dildora I.
description In this article, we studied the convolution operators M k with oscillatory kernel, which are related to the solutions of the Cauchy problem for the strictly hyperbolic equations. The operator M k is associated to the characteristic hypersurfaces Σ ⊂ R 3 of a hyperbolic equation and smooth amplitude function, which is homogeneous of the order - k for large values of the argument. We investigated the convolution operators assuming that the corresponding amplitude function is contained in a sufficiently small conic neighborhood of a given point v ∈ Σ at which, exactly one of the principal curvatures of the surface Σ does not vanish. Such surfaces exhibit singularities of the type A in the sense of Arnold’s classification. Denoting by k p the minimal number such that M k is L p ↦ L p ′ -bounded for k > k p , we showed that the number k p depends on some discrete characteristics of the surface Σ .
doi_str_mv 10.1007/s00041-024-10085-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050230857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050230857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-180d8c006fd54bbc2171a2f46d3c468e2dc4cda1d1f1f06452e1e8153b34fa7a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEObBrO48eUVUoolIOwNlyHZumCnGwXVD79RiCxI3Tzq5mZjVDyCXCNQKUNwEABGbARJb2Ks8OR2SCOccsr3I8ThiKWcLF7JSchbAFYMhLPiHLuqdxY-jTRvmBLkJs31Q0gVrn6dz1H67bxdb1tB6MV9H5QD_buKF10G3XfR_29NH43nTn5MSqLpiL3zklL3eL5_kyW9X3D_PbVaZZCTHDCppKAxS2ycV6rRmWqJgVRcO1KCrDGi10o7BBixYKkTODpkpJ1lxYVSo-JVej7-Dd-86EKLdu5_v0UnLIgfGUvkwsNrK0dyF4Y-XgUzK_lwjyuzE5NiZTY_KnMXlIIj6KQiL3r8b_Wf-j-gJq7m7l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050230857</pqid></control><display><type>article</type><title>On the Sharp Estimates for Convolution Operators with Oscillatory Kernel</title><source>Springer Nature</source><creator>Ikromov, Isroil A. ; Ikromova, Dildora I.</creator><creatorcontrib>Ikromov, Isroil A. ; Ikromova, Dildora I.</creatorcontrib><description>In this article, we studied the convolution operators M k with oscillatory kernel, which are related to the solutions of the Cauchy problem for the strictly hyperbolic equations. The operator M k is associated to the characteristic hypersurfaces Σ ⊂ R 3 of a hyperbolic equation and smooth amplitude function, which is homogeneous of the order - k for large values of the argument. We investigated the convolution operators assuming that the corresponding amplitude function is contained in a sufficiently small conic neighborhood of a given point v ∈ Σ at which, exactly one of the principal curvatures of the surface Σ does not vanish. Such surfaces exhibit singularities of the type A in the sense of Arnold’s classification. Denoting by k p the minimal number such that M k is L p ↦ L p ′ -bounded for k &gt; k p , we showed that the number k p depends on some discrete characteristics of the surface Σ .</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-024-10085-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Amplitudes ; Approximations and Expansions ; Cauchy problems ; Convolution ; Fourier Analysis ; Hyperspaces ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2024-06, Vol.30 (3), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-180d8c006fd54bbc2171a2f46d3c468e2dc4cda1d1f1f06452e1e8153b34fa7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ikromov, Isroil A.</creatorcontrib><creatorcontrib>Ikromova, Dildora I.</creatorcontrib><title>On the Sharp Estimates for Convolution Operators with Oscillatory Kernel</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>In this article, we studied the convolution operators M k with oscillatory kernel, which are related to the solutions of the Cauchy problem for the strictly hyperbolic equations. The operator M k is associated to the characteristic hypersurfaces Σ ⊂ R 3 of a hyperbolic equation and smooth amplitude function, which is homogeneous of the order - k for large values of the argument. We investigated the convolution operators assuming that the corresponding amplitude function is contained in a sufficiently small conic neighborhood of a given point v ∈ Σ at which, exactly one of the principal curvatures of the surface Σ does not vanish. Such surfaces exhibit singularities of the type A in the sense of Arnold’s classification. Denoting by k p the minimal number such that M k is L p ↦ L p ′ -bounded for k &gt; k p , we showed that the number k p depends on some discrete characteristics of the surface Σ .</description><subject>Abstract Harmonic Analysis</subject><subject>Amplitudes</subject><subject>Approximations and Expansions</subject><subject>Cauchy problems</subject><subject>Convolution</subject><subject>Fourier Analysis</subject><subject>Hyperspaces</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEObBrO48eUVUoolIOwNlyHZumCnGwXVD79RiCxI3Tzq5mZjVDyCXCNQKUNwEABGbARJb2Ks8OR2SCOccsr3I8ThiKWcLF7JSchbAFYMhLPiHLuqdxY-jTRvmBLkJs31Q0gVrn6dz1H67bxdb1tB6MV9H5QD_buKF10G3XfR_29NH43nTn5MSqLpiL3zklL3eL5_kyW9X3D_PbVaZZCTHDCppKAxS2ycV6rRmWqJgVRcO1KCrDGi10o7BBixYKkTODpkpJ1lxYVSo-JVej7-Dd-86EKLdu5_v0UnLIgfGUvkwsNrK0dyF4Y-XgUzK_lwjyuzE5NiZTY_KnMXlIIj6KQiL3r8b_Wf-j-gJq7m7l</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ikromov, Isroil A.</creator><creator>Ikromova, Dildora I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>On the Sharp Estimates for Convolution Operators with Oscillatory Kernel</title><author>Ikromov, Isroil A. ; Ikromova, Dildora I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-180d8c006fd54bbc2171a2f46d3c468e2dc4cda1d1f1f06452e1e8153b34fa7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Amplitudes</topic><topic>Approximations and Expansions</topic><topic>Cauchy problems</topic><topic>Convolution</topic><topic>Fourier Analysis</topic><topic>Hyperspaces</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikromov, Isroil A.</creatorcontrib><creatorcontrib>Ikromova, Dildora I.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikromov, Isroil A.</au><au>Ikromova, Dildora I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Sharp Estimates for Convolution Operators with Oscillatory Kernel</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><artnum>29</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>In this article, we studied the convolution operators M k with oscillatory kernel, which are related to the solutions of the Cauchy problem for the strictly hyperbolic equations. The operator M k is associated to the characteristic hypersurfaces Σ ⊂ R 3 of a hyperbolic equation and smooth amplitude function, which is homogeneous of the order - k for large values of the argument. We investigated the convolution operators assuming that the corresponding amplitude function is contained in a sufficiently small conic neighborhood of a given point v ∈ Σ at which, exactly one of the principal curvatures of the surface Σ does not vanish. Such surfaces exhibit singularities of the type A in the sense of Arnold’s classification. Denoting by k p the minimal number such that M k is L p ↦ L p ′ -bounded for k &gt; k p , we showed that the number k p depends on some discrete characteristics of the surface Σ .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-024-10085-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2024-06, Vol.30 (3), Article 29
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_3050230857
source Springer Nature
subjects Abstract Harmonic Analysis
Amplitudes
Approximations and Expansions
Cauchy problems
Convolution
Fourier Analysis
Hyperspaces
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators
Partial Differential Equations
Signal,Image and Speech Processing
title On the Sharp Estimates for Convolution Operators with Oscillatory Kernel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Sharp%20Estimates%20for%20Convolution%20Operators%20with%20Oscillatory%20Kernel&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Ikromov,%20Isroil%20A.&rft.date=2024-06-01&rft.volume=30&rft.issue=3&rft.artnum=29&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-024-10085-z&rft_dat=%3Cproquest_cross%3E3050230857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-180d8c006fd54bbc2171a2f46d3c468e2dc4cda1d1f1f06452e1e8153b34fa7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3050230857&rft_id=info:pmid/&rfr_iscdi=true