Loading…
Neural Network Boundary Approximation for Uncertain Nonlinear Spatiotemporal Systems and Its Application of Tracking Control
This brief addresses the neural network (NN) approximation problem for uncertain nonlinear systems with time-varying parameters (that is, unknown nonlinear spatiotemporal systems). Due to the fact that the unknown spatiotemporal functions cannot be directly approximated by NNs, a so-called time-vary...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-05, Vol.35 (5), p.7238-7243 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This brief addresses the neural network (NN) approximation problem for uncertain nonlinear systems with time-varying parameters (that is, unknown nonlinear spatiotemporal systems). Due to the fact that the unknown spatiotemporal functions cannot be directly approximated by NNs, a so-called time-varying parameter extraction is given to separate time-varying parameters from uncertain nonlinear spatiotemporal functions. By using the supremum of Euler norm of the extracted time-varying parameters, the nonlinear spatiotemporal function is mapped to an unknown state-based boundary function, which can be approximated by NNs. Based on the time-varying parameter extraction, an adaptive neural tracking control law is designed for uncertain strict-feedback nonlinear spatiotemporal systems, which guarantees the convergence of the tracking error with a trajectory performance. The effectiveness of the designed method is verified by simulations. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3212696 |