Loading…
Development of Particle Filters for Portable Air Purifiers by Combining Melt-Blown and Polytetrafluoroethylene to Improve Durability and Performance
Improving indoor air quality through the use of air purifiers has become a major focus, with emphasis on developing filters with high efficiency, high holding capacity, and low-pressure drop to improve the clean air delivery rate (CADR) for air purifiers. However, although most studies focused on de...
Saved in:
Published in: | Indoor air 2024, Vol.2024, p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Improving indoor air quality through the use of air purifiers has become a major focus, with emphasis on developing filters with high efficiency, high holding capacity, and low-pressure drop to improve the clean air delivery rate (CADR) for air purifiers. However, although most studies focused on developing media and evaluating their performance, few studies have reached the employment for a pleated filter. In this study, we newly synthesized flat media and pleated filters by combining polytetrafluoroethylene membrane (PT) and melt-blown (MB) materials (PM) and compared its initial performance to that of other air purifier filters (MB, glass fiber, and PT). Additionally, we analyzed how the performance changed after the particles were loaded. The initial efficiency of the PM filter showed a higher quality factor (QF) than the other filters. Furthermore, when more particles were loaded, the penetration of the PM did not change. These results demonstrate the potential of the PM. However, the CADR and submicron-sized (0.02–0.113 μm) CADR (sCADR) were highest for the MB filter due to the initial pressure drop. Therefore, additional improvements are required to apply the PM in air purifiers. However, the results suggest that the PM can be a new alternative for air purifier filters used in medical centers or facilities with vulnerable populations where a high-efficiency particle air (HEPA) filter must be used. |
---|---|
ISSN: | 0905-6947 1600-0668 |
DOI: | 10.1155/2024/5055615 |