Loading…

Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients

We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical and analytical methods in geomechanics 2024-06, Vol.48 (8), p.2179-2206
Main Authors: Adamus, Filip P., Healy, David, Meredith, Philip G., Mitchell, Thomas M., Stanton‐Yonge, Ashley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93
cites cdi_FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93
container_end_page 2206
container_issue 8
container_start_page 2179
container_title International journal for numerical and analytical methods in geomechanics
container_volume 48
creator Adamus, Filip P.
Healy, David
Meredith, Philip G.
Mitchell, Thomas M.
Stanton‐Yonge, Ashley
description We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.
doi_str_mv 10.1002/nag.3727
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3050932108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050932108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpSDxCJBaWFF-aOGarKihIBRZYsVxfkKtgB9sRZOMReEaeBIeyMp3h_3SOzg_AKYIzBCG-cOJlRiime2CCIKtL1lRkH0wgqUnJYI0OwVGMWwhhldMJeL7r22S_P786H3wfC_2RtIvWu8KbQjgbfQq-s7IYc92KmKy0abgslt5F31ol0oiFU0XIcdKqkF4bk5V2KR6DAyPaqE_-5hQ8XV89Lm_K9cPqdrlYl5JgSktBpJBaSlbNGTLaqJphjJXSTONm0whCzHwua1VRihSpIaZYYGOMgghuyIaRKTjb7e2Cf-t1THzr--DySU7GTwlGsMnqfKdk8DEGbXgX7KsIA0eQj-3x3B4f28u03NF32-rhX8fvF6tf_wM2b3PH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050932108</pqid></control><display><type>article</type><title>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Adamus, Filip P. ; Healy, David ; Meredith, Philip G. ; Mitchell, Thomas M. ; Stanton‐Yonge, Ashley</creator><creatorcontrib>Adamus, Filip P. ; Healy, David ; Meredith, Philip G. ; Mitchell, Thomas M. ; Stanton‐Yonge, Ashley</creatorcontrib><description>We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3727</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Coefficients ; Consolidation ; Deformation ; Fractures ; multiple‐permeability ; multiple‐porosity ; Pore pressure ; Poroelasticity ; Porosity ; rock mechanics</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2024-06, Vol.48 (8), p.2179-2206</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</citedby><cites>FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</cites><orcidid>0000-0002-4361-4104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Adamus, Filip P.</creatorcontrib><creatorcontrib>Healy, David</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Mitchell, Thomas M.</creatorcontrib><creatorcontrib>Stanton‐Yonge, Ashley</creatorcontrib><title>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</title><title>International journal for numerical and analytical methods in geomechanics</title><description>We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.</description><subject>Anisotropy</subject><subject>Coefficients</subject><subject>Consolidation</subject><subject>Deformation</subject><subject>Fractures</subject><subject>multiple‐permeability</subject><subject>multiple‐porosity</subject><subject>Pore pressure</subject><subject>Poroelasticity</subject><subject>Porosity</subject><subject>rock mechanics</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10LtOwzAUBmALgUQpSDxCJBaWFF-aOGarKihIBRZYsVxfkKtgB9sRZOMReEaeBIeyMp3h_3SOzg_AKYIzBCG-cOJlRiime2CCIKtL1lRkH0wgqUnJYI0OwVGMWwhhldMJeL7r22S_P786H3wfC_2RtIvWu8KbQjgbfQq-s7IYc92KmKy0abgslt5F31ol0oiFU0XIcdKqkF4bk5V2KR6DAyPaqE_-5hQ8XV89Lm_K9cPqdrlYl5JgSktBpJBaSlbNGTLaqJphjJXSTONm0whCzHwua1VRihSpIaZYYGOMgghuyIaRKTjb7e2Cf-t1THzr--DySU7GTwlGsMnqfKdk8DEGbXgX7KsIA0eQj-3x3B4f28u03NF32-rhX8fvF6tf_wM2b3PH</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Adamus, Filip P.</creator><creator>Healy, David</creator><creator>Meredith, Philip G.</creator><creator>Mitchell, Thomas M.</creator><creator>Stanton‐Yonge, Ashley</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4361-4104</orcidid></search><sort><creationdate>20240601</creationdate><title>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</title><author>Adamus, Filip P. ; Healy, David ; Meredith, Philip G. ; Mitchell, Thomas M. ; Stanton‐Yonge, Ashley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Coefficients</topic><topic>Consolidation</topic><topic>Deformation</topic><topic>Fractures</topic><topic>multiple‐permeability</topic><topic>multiple‐porosity</topic><topic>Pore pressure</topic><topic>Poroelasticity</topic><topic>Porosity</topic><topic>rock mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adamus, Filip P.</creatorcontrib><creatorcontrib>Healy, David</creatorcontrib><creatorcontrib>Meredith, Philip G.</creatorcontrib><creatorcontrib>Mitchell, Thomas M.</creatorcontrib><creatorcontrib>Stanton‐Yonge, Ashley</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adamus, Filip P.</au><au>Healy, David</au><au>Meredith, Philip G.</au><au>Mitchell, Thomas M.</au><au>Stanton‐Yonge, Ashley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>48</volume><issue>8</issue><spage>2179</spage><epage>2206</epage><pages>2179-2206</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>We propose the generalization of the anisotropic poroelasticity theory. At a large scale, a medium is viewed as quasi‐static, which is the original assumption of Biot. At a smaller scale, we distinguish different sets of pores or fractures that are characterized by various fluid pressures, which is the original poroelastic extension of Aifantis. In consequence, both instantaneous and time‐dependent deformation lead to fluid content variations that are different in each set. We present the equations for such phenomena, where the anisotropic properties of both the solid matrix and pore sets are assumed. Novel poroelastic coefficients that relate solid and fluid phases in our extension are proposed, and their physical meaning is determined. To demonstrate the utility of our equations and emphasize the meaning of new coefficients, we perform numerical simulations of a triple‐porosity consolidation. These simulations reveal positive pore pressure transients in the drained behaviour of weakly connected pore sets, and these may result in the mechanical weakening of the material.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3727</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-4361-4104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2024-06, Vol.48 (8), p.2179-2206
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_journals_3050932108
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
Coefficients
Consolidation
Deformation
Fractures
multiple‐permeability
multiple‐porosity
Pore pressure
Poroelasticity
Porosity
rock mechanics
title Multi‐porous extension of anisotropic poroelasticity: Consolidation and related coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90porous%20extension%20of%20anisotropic%20poroelasticity:%20Consolidation%20and%20related%20coefficients&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Adamus,%20Filip%20P.&rft.date=2024-06-01&rft.volume=48&rft.issue=8&rft.spage=2179&rft.epage=2206&rft.pages=2179-2206&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3727&rft_dat=%3Cproquest_cross%3E3050932108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3277-a3cacecc95491fefd69222dde9e28b8a33f44c6d5771d360272a2fffd010b3b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3050932108&rft_id=info:pmid/&rfr_iscdi=true